• Title/Summary/Keyword: imaging physics

Search Result 635, Processing Time 0.025 seconds

Orthodontic appliances and MR image artefacts: An exploratory in vitro and in vivo study using 1.5-T and 3-T scanners

  • Sonesson, Mikael;Al-Qabandi, Fahad;Mansson, Sven;Abdulraheem, Salem;Bondemark, Lars;Hellen-Halme, Kristina
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • Purpose: The aim of this study was to assess the artefacts of 12 fixed orthodontic appliances in magnetic resonance images obtained using 1.5-T and 3-T scanners, and to evaluate different imaging sequences designed to suppress metal artefacts. Materials and Methods: In vitro, study casts of 1 adult with normal occlusion were used. Twelve orthodontic appliances were attached to the study casts and scanned. Turbo spin echo (TSE), TSE with high readout bandwidth, and TSE with view angle tilting and slice encoding for metal artefact correction were used to suppress metal artefacts. Artefacts were measured. In vivo, 6 appliances were scanned: 1) conventional stainless-steel brackets; 2) nickelfree brackets; 3) titanium brackets; 4) a Herbst appliance; 5) a fixed retainer; and 6) a rapid maxillary expander. The maxilla, mandible, nasopharynx, tongue, temporomandibular joints, and cranial base/eye globes were assessed. Scores of 0, 1, 2, and 3 indicated no artefacts and minor, moderate, and major artefacts, respectively. Results: In vitro, titanium brackets and the fixed retainer created minor artefacts. In vivo, titanium brackets caused minor artefacts. Conventional stainless-steel and nickel free brackets, the fixed retainer, and the rapid maxillary expander caused major artefacts in the maxilla and mandible. Conventional stainless-steel and nickel-free brackets caused major artefacts in the eye globe (3-T). TSE with high readout bandwidth reduced image artefacts in both scanners. Conclusion: Titanium brackets, the Herbst appliance, and the fixed retainer caused minor artefacts in images of neurocranial structures(1.5-T and 3-T) when using TSE with high readout bandwidth.

On-line Quality Assurance of Linear Accelerator with Electronic Portal Imaging System (전자포탈영상장치(EPID)를 이용한 선형가속기의 기하학적 QC/QA System)

  • Lee, Seok;Jang, Hye-Sook;Choi, Eun-Kyung;Kwon, Soo-Il;Lee, Byung-Yong
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.127-136
    • /
    • 1998
  • On-line geometrical quality assurance system has been developed using electronic portal imaging system(OQuE). EPID system is networked into Pentium PC in order to transmit the acquisited images to analysis PC. Geometrical QA parameters, including light-radiation field congruence, collimator rotation axis, and gantry rotation axis can be easily analyzed with the help of graphic user interface(GUI) software. Equipped with the EPID (Portal Vision, Varian, USA), geometrical quality assurance of a linear accelerator (CL/2100/CD, Varian, USA), which is networked into OQuE, was performed to evaluate this system. Light-radiation field congruence tests by center of gravity analysis shows 0.2~0.3mm differences for various field sizes. Collimator (or Gantry) rotation axis for various angles could be obtained by superposing 4 shots of angles. The radius of collimator rotation axis is measured to 0.2mm for upper jaw collimator, and 0.1mm for lower jaw. Acquisited images for various gantry angles were rotated according to the gantry angle and actual center of image point obtained from collimator axis test. The rotated images are superpositioned and analyzed as the same method as collimator rotation axis. The radius of gantry rotation axis is calculated 0.3mm for anterior/posterior direction (gantry 0$^{\circ}$ and 170$^{\circ}$) and 0.7mm for right/left direction(gantry 90$^{\circ}$ and 260$^{\circ}$). Image acquisition for data analysis is faster than conventional method and the results turn out to be excellent for the development goal and accurate within a milimeter range. The OQuE system is proven to be a good tool for the geometrical quality assurance of linear accelerator using EPID.

  • PDF

Understanding on MR Perfusion Imaging Using First Pass Technique in Moyamoya Diseases (Moyamoya 질환에서 1차 통과기법을 이용한 자기공명관류영상의 이해)

  • Ryu, Young-Hwan;Goo, Eun-Hoe;Jung, Jae-Eun;Dong, Kyung-Rae;Choi, Sung-Hyun;Lee, Jae-Seung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • The purpose of this study was to investigated the usefulness of MR perfusion image comparing with SPECT image. A total of pediatric 30 patients(average age : 7.8) with Moyamoya disease were performed MR Perfusion with 32 channel body coil at 3T from March 01, 2010 to June 10, 2010. The MRI sequences and parameters were as followed : gradient Echo-planar imaging(EPI), TR/TE : 2000ms/50ms, FA : $90^{\circ}$, FOV : $240{\times}240$, Matrix : $128{\times}128$, Thickness : 5mm, Gap : 1.5mm. Images were obtained contrast agent administrated at a rate of 1mL/sec after scan start 10s with a total of slice 1000 images(50 phase/1 slice). It was measured with visual color image and digitize data using MRDx software(IDL version 6.2) and also, it was compared of measurement with values of normal and abnormal ratio to analyze hemodynamic change, and a comparison between perfusion MR with technique using Warm Color at SPECT examination. On MR perfusion examination, the color images from abnormal region to the red collar with rCBV(relative cerebral blood volume) and rCBF(relative cerebral blood flow) caused by increase cerebral blood flow with brain vascular occlusion in surrounding collateral circulation advancement, the blood speed relatively was depicted slowly with blue in MTT(Mean Transit Time) and TTP(Time to Peak) images. The region which was visible abnormally from MR perfusion examination visually were detected as comparison with the same SPECT examination region, would be able to confirm the identical results in MMD(Moyamoya disease)judgments. Hymo-dynamic change in MR perfusion examination produced by increase and delay cerebral blood flow. This change with digitize data and being color imaging makes enable to distinguish between normal and abnormal area. Relatively, MR perfusion examination compared with SPECT examination could bring an excellent image with spatial resolution without radiation expose.

  • PDF

Elliptical Centric Techniques and Tricks About the Usefulness of the Clinical Application (Elliptical Centric과 TRICKS 기법의 임상 적용에 관한 유용성 연구)

  • Kim, Sae-Ssak;Goo, Eun-Hoe;Dong, Kyung-Rae;Kweon, Dae-Chel;Lee, Jae-Seung;Cho, Jae-Hwan;Park, Chang-Hee
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • To prospectively determine the diagnostic performance a combination of standard bolus-chase magnetic resonance (MR) angiography and MR angiography with time-resolved imaging of contrast kinetics (TRICKS) for depicting severity of the head and neck vascular diseases. Over a period of two months, A total of 100 patients(average ages : $50{\pm}8$, male : 60, female : 40) with head and neck vascular diseases were performed on the GE excite 3.0 T units with 8-channel head coil and 4-channel NV coil. Imaging parameters for a typical study were as follow: SBC(TR/ TE/ FA/ SliceThicken./ Slab/ Freq./ FOV/ BW/Scan Time) = 5.4/ min/ 30/ 2/ zip2/ 70/ $224{\times}448$/ 30/ 62.50/ 28, TRICKS(TR/ TE/ FA/ Slice Thicken/Slab/ Freq./ FOV/ BW/ Temp Res./ Scan Time = 3.6/ min/ 25/ 4/ 30/ $160{\pm}384$, zip512/ 30/ 100/ 1 to 1.5/ 23). The analysis of all MR images, which have respect-ively classified two techniques into some diseases. The results of the former were divided into two groups(SBC, TRICKS)with 4 grading of two reader, respectively. Wilcoxon signed rank test was used to determine if a significant difference between imaging techniques existed(p < 0.05). In 33 of 100 patients, arterio-venous malformation was 11% at TRICKS, subclavian vein stenosis : 8%, fistular sinus : 4%, jugular vein stenosis:6%, Middle Cerebral Artery bypass surgery : 4%, p < 0.05). The rest of 67 patients were considered as the results of SBC(14% in the basilar artery stenosis, carotid stenosis : 16%, vertebral stenosis : 17%, central neuro-cytoma : 5%, meningioma : 5%, Not appliable : 10%, p < 0.05). Sensitivity and specificity of TRICKS MR angiography in SVS, FS, JVS, MCABS were improved compared with those at standard MR angiography. In SBS MR angiography which were improved in BAS, CS, VS, CN, Meningioma. In conclusion, TRICKS MR angiography of the SVS, FS, JVS, MCABS is superior to standard MR angiography regarding the number of diagnostic grading. The SBS MR angiography were improved in BAS, CS, VS, CN, Meningioma. and assessment of the degree of luminal narrowing on both TRICKS and SBS.

  • PDF

Assessment of Effective Dose by using additional Filters in Dental Radiography: PC-Based Monte Carlo Program Analysis Subjected on Intraoral Radiography (치과 방사선 촬영의 부가 필터 사용에 따른 유효선량 평가: 구내 촬영에 대한 PC-Based Monte Carlo Program 분석)

  • Kwak, Jong Hyeok;Kim, A Yeon;Kim, Gyeong Rip;Cho, Hee Jung;Moon, Sung Jin;Kil, Sang Hyeong;Lee, Jong Kyu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.491-498
    • /
    • 2021
  • In this study, the effective dose was measured using the PCXMC v2.0 program by examining the conditions used to set the diagnostic reference level for intraoral imaging recommended by the government, and the effect of the Al additive filter was confirmed. In oral imaging, the largest effective dose was calculated from the oral mucosa among 11 organs. The effect of the Al additive filter showed an excellent radiation reduction effect at 2mm rather than 1mm. In the case of children aged 5 years, the overall effective dose was calculated to be high in all 11 organs because they are more sensitive to radiation than adults. And as a result of evaluating the image quality according to the use of an additional filter during intraoral imaging, there was no significant difference in SNR and CNR changes compared to before the additional filter was used. Based on this study, it is thought that additional filter settings can be recommended for intraoral imaging.

Dosimetric Evaluation of a Small Intraoral X-ray Tube for Dental Imaging (치과용 초소형 X-선 튜브의 선량평가)

  • Ji, Yunseo;Kim, YeonWoo;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.160-167
    • /
    • 2015
  • Radiation exposure from medical diagnostic imaging procedures to patients is one of the most significant interests in diagnostic x-ray system. A miniature x-ray intraoral tube was developed for the first time in the world which can be inserted into the mouth for imaging. Dose evaluation should be carried out in order to utilize such an imaging device for clinical use. In this study, dose evaluation of the new x-ray unit was performed by 1) using a custom made in vivo Pig phantom, 2) determining exposure condition for the clinical use, and 3) measuring patient dose of the new system. On the basis of DRLs (Diagnostic Reference Level) recommended by KDFA (Korea Food & Drug Administration), the ESD (Entrance Skin Dose) and DAP (Dose Area Product) measurements for the new x-ray imaging device were designed and measured. The maximum voltage and current of the x-ray tubes used in this study were 55 kVp, and 300 mA. The active area of the detector was $72{\times}72mm$ with pixel size of $48{\mu}m$. To obtain the operating condition of the new system, pig jaw phantom images showing major tooth-associated tissues, such as clown, pulp cavity were acquired at 1 frame/sec. Changing the beam currents 20 to $80{\mu}A$, x-ray images of 50 frames were obtained for one beam current with optimum x-ray exposure setting. Pig jaw phantom images were acquired from two commercial x-ray imaging units and compared to the new x-ray device: CS 2100, Carestream Dental LLC and EXARO, HIOSSEN, Inc. Their exposure conditions were 60 kV, 7 mA, and 60 kV, 2 mA, respectively. Comparing the new x-ray device and conventional x-ray imaging units, images of the new x-ray device around teeth and their neighboring tissues turn out to be better in spite of its small x-ray field size. ESD of the new x-ray device was measured 1.369 mGy on the beam condition for the best image quality, 0.051 mAs, which is much less than DRLs recommended by IAEA (International Atomic Energy Agency) and KDFA, both. Its dose distribution in the x-ray field size was observed to be uniform with standard deviation of 5~10 %. DAP of the new x-ray device was $82.4mGy*cm^2$ less than DRL established by KDFA even though its x-ray field size was small. This study shows that the new x-ray imaging device offers better in image quality and lower radiation dose compared to the conventional intraoral units. In additions, methods and know-how for studies in x-ray features could be accumulated from this work.

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.

Galaxy Clusters at High Redshift

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2015
  • Hierarchical galaxy formation models under LCDM cosmology predict that the most massive structures such as galaxy clusters (M > $10^{14}M_{\odot}$) appear late (z < 1) in the history of the universe through hierarchical clustering of small objects. Galaxy formation is also expected to be accelerated in overdense environments, with the star formation rate-density relation to be established at z ~ 2. In this talk, we present our search of massive structures of galaxies at 0.7 < z < 4, using the data from GOODS survey and our own imaging survey, Infrared Medium-deep Survey (IMS). From these studies, we find that there are excess of massive structures of galaxies at z > 2 in comparison to the Millennium simulation data. At 1 < z < 2, the number density of massive structures is consistent with the simulation data, but the star formation history is more or less identical between field and cluster. The star formation quenching process is dominated by internal process (stellar mass). The environmental effect becomes important only at z < 1, which contributes to create the well known star formation-density relation in the local universe. Our results suggest that galaxy formation models under LCDM cosmology may require further refinements to match the observation.

  • PDF

HUBBLE SPACE TELESCOPE IMAGING OF GLOBULAR CLUSTERS IN TWO FACE-ON LOW SURFACE BRIGHTNESS GALAXIES UGC 5981 AND UGC 6614

  • Kim, Ji-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.151-160
    • /
    • 2011
  • We present a study searching for globular cluster systems (GCSs) of two face-on low surface bright- ness galaxies (LSBGs), UGC 5981 and UGC 6614. Based on HSTWFPC2 images of F555Wand F814W filters, we detect 12 and 18 GC candidates for UGC 5981 and UGC 6614, respectively. Although these two LSBGs have very different bulge properties, they have very similar specific frequencies ($S_N$) of 0.1. However, $S_N$ ~ 0.1 is quite small even for their late morphological types, albeit within errors. This suggests that LSBGs have had star formation histories lacking dominant initial starburst events while accumulating their stellar masses through sporadic star formation activities.

Quantitative Measurement of Nano-scale Force using Atomic Force Microscopy (AFM을 이용한 나노스케일 힘의 정량적 측정)

  • Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.62-69
    • /
    • 2012
  • Atomic force microscopy (AFM) has been widely utilized as a versatile tool not only for imaging surfaces but also for understanding nano-scale interfacial phenomena. By measuring the responses of the photo detector due to bending and torsion of the cantilever, which are caused by the interactions between the probe and the sample surface, various interfacial phenomena and properties can be explored. One of the challenges faced by AFM researchers originates in the physics of measuring the small forces that act between the probe of a force sensing cantilever and the sample. To understand the interactions between the probe and the sample quantitatively, the force calibration is essential. In this work, the procedures used to calibrate AFM instrumentation for nano-scale force measurement in normal and lateral directions are reviewed.