• Title/Summary/Keyword: imaging physics

Search Result 639, Processing Time 0.036 seconds

Tracing the Giant Metal-poor Halo Around the Sombrero

  • Kang, Jisu;Lee, Myung Gyoon;Jang, In Sung;Ko, Youkyung;Sohn, Jubee;Hwang, Narae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.30.2-30.2
    • /
    • 2016
  • M104 (NGC 4594, the Sombrero) is an intriguing disk galaxy classified as an elliptical galaxy nowadays. It hosts a luminous bulge and a massive disk, but it is still mysterious how M104 acquired such peculiar structures. Globular clusters are an useful tracer to investigate the formation history of early-type galaxies. In this study we present a wide field imaging study of the globular clusters in M104. Using wide ($1^{\circ}{\times}1^{\circ}$) and deep ugi images of M104 obtained with the CFHT/MegaCam observations, we detect a large number of globular clusters. The color distribution of these globular clusters shows that there are two subpopulations: a metal-poor system and a metal-rich system. The radial number density of the metal-poor globular clusters shows a long tail reaching R ~ 30' (~ 80 kpc), indicating clearly the existence of a giant metal-poor halo in M104. This result is consistent with the previous studies on the dual halos of massive early-type galaxies. We will discuss implications of these results in relation with the formation history of M104.

  • PDF

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

ARPES study of Ultrathin Fe Grown on Cu (001) surface

  • Poornima, L.;Oh, Y.R.;Park, Y.S.;Kim, W.;Kim, C.G.;Hong, J.;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.350-350
    • /
    • 2011
  • The spin structure of Fe over layers on Cu (001), especially in region II is one of the unsolved problem for many years. We study the out - of - plane (OP) Fermi surfaces (FSs) of 7 monolayer Fe/Cu (001) films using angle resolved photo emission spectroscopy (ARPES). Ultrathin Fe was grown on Cu (001) substrate at room temperature and the experimental measurements were carried out at room temperature and low temperature. Fermi surfaces measured about $\frac{1}{4}$ of the Brillouin Zone (BZ) using photon energies ranging from 170 eV to 280 eV. Our results confirmed that ferromagnetic signal at 7 ML Fe on Cu (001) is nearly zero. These results are consistent with our recent x-ray magnetic circular dichroism (XMCD) and surface magneto - optic Kerr effect (SMOKE) experiments. Based on our observations we have made a simple model of this system, which explains all the experimental results.

  • PDF

STM investigation of as-cleaved and annealed single crystalline GeTe (111) surface

  • Kim, Ji-ho;Choi, Hoon-hee;Chung, In;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.140.2-140.2
    • /
    • 2016
  • Despite the growing interest in GeTe as a archetypal displacive ferroelectric material as well as the basis of related materials used in data-storage applications, atom-resolved study of single crystalline GeTe surface been lacking. Using low temperature scanning tunneling microscopy (STM) and spectroscopy (STS), we investigated as-cleaved and annealed surfaces of GeTe. We found that as-cleaved GeTe(111) surface is composed of at least two kinds of terraces at 78 K. While two terraces show metallic characteristics, they also exhibit distinctive I-V spectra and imaging conditions, with each being attributed to Ge-terminated, and Te-terminated surfaces respectively. GeTe(111) surfaces annealed at moderately elevated temperature introduces intricate networks of extended defect structures. We will present these data and discuss the role of vacancies in the formation of these structures.

  • PDF

Dual-wavelength Digital Holography Microscope for BGA Measurement Using Partial Coherence Sources

  • Cho, Hyung-Jun;Kim, Doo-Cheol;Yu, Young-Hun;Jung, Won-Ki;Shin, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • Dual-wavelength holography has a better axial range than single-wavelength holography, allowing unambiguous phase imaging. Partial coherence sources reduce coherent noise, resulting in improved reconstructed images. We measured a ball-grid array using dual-wavelength holography with partial coherence sources. This holography method is useful for measurement samples that exhibit coherence noise and have a step height larger than the single wavelength used in holography.

High Resolution Photonic Force Microscope Using Resonance Energy Transfer

  • Heo, Seung-Jin;Kim, Ki-Pom;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.288-288
    • /
    • 2010
  • Photonic Force Microscope (PFM) is a scanning force microscope using an optical trap with several piconewton. In PFM, we can have topological information from the bead position trapped in optical trap. Typically the resolutions of lateral and vertical position are 40 nm and 50 nm respectively. To improve the vertical resolution below 10 nm, we use resonance energy transfer which has 5nm resolution in distance. Here we show preliminary results, including performances of scanning bead and fluorescence imaging system.

  • PDF

Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids

  • Lee, Hong Seok;Shin, Sanghoon;Lee, Heonjoo;Yu, Younghun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.495-499
    • /
    • 2014
  • In this paper, a method is proposed for simultaneously measuring the front and back surface profiles of transparent micro-optical components. The proposed method combines a dual-wavelength digital holographic microscope with liquids to record holograms at different wavelengths, and then numerically reconstructs the three-dimensional phase information to image the front and back sides of the sample. A theoretical model is proposed to determine the surface information, and imaging of an achromatic lens is demonstrated experimentally. Unlike conventional interferometry, our proposed method supports nondestructive measurement and direct observation of both front and back profiles of micro-optical elements.

Simple Graphical Selection of Optical Materials for an Athermal and Achromatic Design Using Equivalent Abbe Number and Thermal Glass Constant

  • Kim, Young-Ju;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.182-187
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glasses to simultaneously achromatize and athermalize an imaging lens made of materials in contact. An athermal glass map that plots thermal glass constant versus inverse Abbe number is derived through analysis of optical glasses and plastic materials in visible light. By introducing the equivalent Abbe number and equivalent thermal glass constant, although it is a multi-lens system, we have a simple way to visually identify possible optical materials. Applying this method to design a phone camera lens equipped with quarter inch image sensor having 8-mega pixels, the thermal defocuses over $-20^{\circ}C$ to $+60^{\circ}C$ are reduced to be much less than the depth of focus of the system.

UBVRI Photometry of SN 2011fe

  • Lee, Jisoo;Im, Myungshin;Jeon, Yiseul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.86.2-86.2
    • /
    • 2012
  • SN 2011fe is the closest and brightest Type Ia supernova in the digital imaging era and thus provides the richest data. We present UBVRI photometry of SN 2011fe for a span of ~180 days after the optical maximum. This paper contains measurements made at SOAO, LOAO, and SNUO and also includes data from a small telescope in Mongolia. We compare the results with the ones obtained by Richmond & Smith (2012) and Vinko et al. (2012).

  • PDF