• Title/Summary/Keyword: imaging physics

Search Result 634, Processing Time 0.04 seconds

Evaluation of Selective Saturation and Refocousing Pulses in Chemical Shift NMR Imaging

  • Shin, Yong-Jin;Park, Young-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.64-73
    • /
    • 2000
  • There are several methods to achieve selective NMR image of differing chemical species with the three most popular methods of Dixon's, CHESS, and SECSI. A major problem common to all chemical shift imaging methods is the uniformity of the static magnetic field and distortions introduced when RF coils are loaded with a conducting specimen. Without magnetic field shimming, these methods cannot be used to acquire selectively image protons in fat and water which are separated by approximately 3.0ppm. Experiments with a phantom, with linewidths of 2.5 to 3.5ppm, were quantitatively evaluated for the three methods and a new chemical shift imaging method. In this study the new chemical shift imaging method (modified CHESS+SECSI technique) which included a selective saturation and refocusing pulse, was developed to determine the ratios of water and fat in different samples.

  • PDF

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Application and Prospects of Molecular Imaging (분자영상의 적용분야 및 전망)

  • Choi, Guyrack;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.123-136
    • /
    • 2014
  • In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

Current Status of Imaging Physics & Instrumentation In Nuclear Medicine (핵의학 영상 물리 및 기기의 최신 동향)

  • Kim, Hee-Joung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.83-87
    • /
    • 2008
  • Diagnostic and functional imaging device have been developed independently. The recognition that combining of these two devices can provide better diagnostic outcomes by fusing anatomical and functional images. The representative examples of combining devices would be PET/CT and SPECT/CT. Development and their applications of animal imaging and instrumentation have been very active, as new drug development with advanced imaging device has been increased. The development of advanced imaging device resulted in researching and developing for detector technology and imaging systems. It also contributed to develop a new software, reconstruction algorithm, correction methods for physical factors, image quantitation, computer simulation, kinetic modeling, dosimetry, and correction for motion artifacts. Recently, development of MRI and PET by combining them together was reported. True integration of MRI and PET has been making the progress and their results were reported. The recent status of imaging and instrumentation in nuclear medicine is reported in this paper.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Novel Scanning Tunneling Spectroscopy for Volatile Adborbates

  • Choi, Eun-Yeoung;Lee, Youn-Joo;Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.58-58
    • /
    • 2010
  • Reactive or unstable adsorbates are often difficult to study spectroscopically. They may have, for instance, resonance states lying close to the Fermi level, inducing them to desorb or decompose by the probe itself, low-energy tunneling electrons. In order to overcome this limitation, we developed a novel method, which we call x-ramp scan. The method sweeps the bias voltage, with the simutaneous scan along the imaging direction, in a constant current mode. This mapping yields the tip-height variation as a function of bias, or Z(V), at nominally always fresh surface. We applied this method to the investigation of methanol-induced molecular features, attributed to methoxy, found on NiAl(110) surface. These were produced by methanol molecules deposited by a pulse injection method onto the metallic surface. Our study shows adsorbed methoxy are very reactive to the bias voltage, rendering the standard spectroscopy useless. Our new x-ramp scan shows that the decomposition of adsorbates occurs at the sample bias of 3.63 V, and proceeds with the lifetime of a few milliseconds. The details of the method will be provided at the discussion.

  • PDF

Optical follow-up observation of three long GRBs with SomangNet facilities

  • Paek, Gregory S.H.;Im, MyungShin;Kim, Joonho;Lim, Gu;Jeong, Mankeun;Kang, Wonseok;Kim, Taewoo;Burkhonov, Otabek;Mirazaqulov, Davron;Ehgamberdiev, Shyhrat A.;Seo, Jinguk;Lee, Chung-Uk;Kim, Seung-Lee;Sung, Hyung-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49.5-50
    • /
    • 2021
  • We report the optical follow-up observations of three long γ-ray burst events, GRB 201020A, GRB 201103B and GRB 210104A by the network of telescopes in the SomangNet project. We show light curves, color evolution and SED evolution, and fit them to a single power law function to derive decay index and compare their properties with other long GRBs samples. Also, we show a good observational example that 0.4-1m class telescopes in SomangNet have potential to catch dim light from high red shift object (R>22 mag) by deep imaging. In conclusion, we found that three GRBs have optical afterglow properties of long GRB and our results are consistent with the reports of high energy analysis.

  • PDF

Physics of Harmonic Imaging (하모닉 영상의 물리학)

  • Choi, Min Joo;Yang, Jeong Hwa;Paeng, Dong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.564-572
    • /
    • 2012
  • Harmonic imaging is introduced in the present article and its principle and physical characteristics is described in contrast to conventional ultrasonic imaging. The principle of the conventional image which uses ultrasonic echoes reflected at the interfaces between tissues is presented, and the nonlinear ultrasonic propagation which results in harmonic components is conceptually described. The pulse inversion technique which effectively extracts the harmonic components from the ultrasonic echo signals is introduced, and the advantages of the constructed harmonic images are summarized comparing with those of conventional ultrasonic images. The harmonic images are classified according to the mechanism of harmonic production, and the typical harmonic images obtained from patients are presented in contrast to the corresponding sonograms. Clinical significance and prospects of harmonic imaging and the future research areas are discussed.

Geometrical QC/QA for Medical Linear Accelerator using Electronic Portal Imaging Devices(EPID) (전자포탈영상장치 (EPID)를 이용한 선형가속기의 기하학적인 QC/QA)

  • Lee, Seok;Lee, Byung-Yong;Cho, Jung-Gil;Kwon, Soo-Il;Jung, Won-Kyu;Kim, Jong-Hoon
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.59-65
    • /
    • 1997
  • We have designed the software for geometrical QC/QA for medical linear accelerator using electronic portal imaging devices (EPID). The radiation-light field congruence, the collimator rotation axis, and the gantry rotation axis could be estimated with this software. Precision of the system is within 1mm. The collimator and the gantry rotation axis could be measured by superpositioning the images from 4 different collimator (or gantry) angles. The EPID system and the analysis software which was developed in this study make it possible that the quantitative and the objective geometrical QC/QA of the linear accelerator.

  • PDF

Observations of Solar Filaments with Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory

  • Song, Dong-Uk;Park, Hyung-Min;Chae, Jong-Chul;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Cho, Kyung-Suk;Jang, Bi-Ho;Ahn, Kwang-Su;Cao, Wenda;Goode, Philip R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • Fast Imaging Solar Spectrograph (FISS) is an instrument developed by Seoul National University and Korea Astronomy and Space Science Institute and installed at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory. Using this instrument, we observed solar filaments and analyzed the data focusing on determining the temperature and non-thermal velocity. We inferred the Doppler absorption widths of $H{\alpha}$ and Ca II 8542$\bar{A}$ lines from the line profiles using the cloud model. From these values, we separately determined temperature and non-thermal velocity. Our first result came from a solar filament observed on 2010 July 29th. Temperature inside a small selected region of this ranges from 4500K to 12000K and non-thermal velocity, from 3.5km/s to 7km/s. We also found temperature varied a lot with time. For example temperature at a fixed point varied from 8000K to 18000K for 40 minutes, displaying an oscillating pattern with a period of about 8 minutes and amplitude of about 2000K. We will also present new results from filaments observed in 2011 summer.

  • PDF