• Title/Summary/Keyword: imaging material

Search Result 578, Processing Time 0.023 seconds

Effect of Gd-DTPA on Diffusion in Canine Brain with Hyperacute Stroke (초급성 뇌경색을 일으킨 개에서 Gd-조영제의 주입이 뇌의 확산에 미치는 영향)

  • 김범수;정소령;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 2002
  • Purpose : To evaluate the effect of Gd-DTPA on signal intensity of diffusion-weighted magnetic resonance(MR) image and apparent diffuse coefficient (ADC) in dog brain with hype racute stroke. Materials and methods : Experimental canine model of hyperacute cerebral infarction was made by selective intraarterial embolization with particulate embolic material. Diffusion-weighted MR imaging was performed in five dogs at 1 hour after the embolization of internal carotid artery. After intravenous bolus injection of Gd- DTPA, additional 11 diffusion-weighted MR images were serially obtained from 2 minutes to 90 minutes after injection in each dog. The author evaluated findings of hyperacute cerebral infarction on diffusion-weighted MR imaging, and calculated mean signal intensity and mean ADC in infarcted region and contralateral normal region. Statistical analysis of mean signal intensity, mean ADC and contrast-noise ratio before and after Gd-DTPA injection was performed. Results : Hyperacute cerebral infarction developed in all five dogs on diffusion-weighted MR images obtained 1 hour after embolization. The area of hyperacute infarction had steady increase in signal intensity on diffusion-weighted MR image and decrease in ADC. In normal perfusion area, decrease in signal intensity was observed at 2 minutes the Gd-DTPA injection, whereas ADC did not changed. Conclusion : Intravenous injection of Gd-DTPA had no influence on ADC in both hyperacute infarction and normally perfused are a, but caused initial transient signal reduction in normally perfused area on diffusion-weighted MR image due to susceptibility effect of Gd-DTPA. It is important to calculate ADC in evaluating the effect of diffusion after injection of Gd-DTPA.

  • PDF

Imaging of Sequestered Lumbar Discs (요추 분리추간판의 영상 소견)

  • Gangwon Jeong;Heecheol Park;Sun Joo Lee;Dae-Hyun Park;Sung Hwa Paeng;Eugene Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.1
    • /
    • pp.3-23
    • /
    • 2024
  • Intervertebral disc herniation is frequently encountered in radiological practice. Sequestered disc herniation occurs when the disc material undergoes degeneration and completely loses continuity with the parent nucleus pulposus. Sequestered discs can reside within and outside the spinal canal, exerting a mass effect on adjacent structures, compressing nerve pathways, and eliciting a range of clinical symptoms. In particular, sequestered discs within the dura cannot be identified without durotomy. Therefore, precise preoperative localization is crucial for surgical planning. On MRI, the signal intensity of the sequestered disc may vary due to independent degeneration processes. Additionally, most sequestered disc fragments show varying degrees of peripheral enhancement depending on the degree of angiogenesis and granulation around the isolated tissue. In this article, we review various imaging findings and the location of the sequestered disc to provide patients with an accurate diagnosis and appropriate treatment direction.

Design modification and structural behavior study of a CFRP star sensor baffle

  • Vinyas, M.;Vishwas, M.;Venkatesha, C.S.;Rao, G. Srinivasa
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.427-445
    • /
    • 2016
  • Star sensors are the attitude estimation sensors of the satellite orbiting in its path. It gives information to the control station on the earth about where the satellite is heading towards. It captures the images of a predetermined reference star. By comparing this image with that of the one captured from the earth, exact position of the satellite is determined. In the process of imaging, stray lights are eliminated from reaching the optic lens by the mechanical enclosures of the star sensors called Baffles. Research in space domain in the last few years is mainly focused on increased payload capacity and reduction in launch cost. In this paper, a star sensor baffle made of Aluminium is considered for the study. In order to minimize the component weight, material wastage and to improve the structural performance, an alternate material to Aluminium is investigated. Carbon Fiber Reinforced Polymer is found to be a better substitute in this regard. Design optimisation studies are carried out by adopting suitable design modifications like implementing an additional L-shaped flange, Upward flange projections, downward flange projections etc. A better configuration of the baffle, satisfying the design requirements and achieving manufacturing feasibility is attained. Geometrical modeling of the baffle is done by using UNIGRAPHICS-Nx7.5(R). Structural behavior of the baffle is analysed by FE analysis such as normal mode analysis, linear static analysis, and linear buckling analysis using MSC/PATRAN(R), MSC-NASTRAN(R) as the solver to validate the stiffness, strength and stability requirements respectively. Effect of the layup sequence and the fiber orientation angle of the composite layup on the stiffness are also studied.

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

Calcific Tendinitis of Shoulder Associated with Intraosseous Involvement -A Case Report- (골내 침범을 동반한 견관절 석회화 건염 - 증례 보고 -)

  • Ku, Jung-Hoei;Cho, Hyung-Lae;Park, Man-Jun;Kim, Jeong-Cheol
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.2
    • /
    • pp.242-247
    • /
    • 2011
  • Purpose: We present an atypical case of calcific tendinitis of the shoulder with intraosseous loculation. Materials and Methods: A 59 year-old female complained of acute exacerbation of chronic left shoulder pain and restricted range of motion. Simple radiographs showed a subacromial calcific deposit and magnetic resonance imaging revealed cortical erosion with intraosseous extension of calcific material mimicking infection or tumor. She was managed with arthroscopic excision of the calcific deposit, curettage of the intraosseous lesion and subsequent rotator cuff repair with a suture anchor. Results: Her acute pain promptly subsided. Her rehabilitation was uneventful and she gained full range of motion. Radiographs five months after the operation showed no recurrence of calcific material. Conclusion: Calcific tendinitis of the shoulder can present with a variety of images involving the adjacent bone. The correct recognition of this disorder may avoid unnecessary investigation and treatment.

Evaluation of the Utility of Self Produced MRI Radiofrequency Shielding Material (자체 제작한 자기공명영상 고주파 차폐체의 유용성 평가)

  • Lee, Jin-Hoe;Lee, Bo-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.89-94
    • /
    • 2020
  • This paper proposes a better shielding method to over sampling technique. The new method uses aluminum foil for RF shielding. As a result of the phantom test, when the over-sampling technique was applied, the aliasing artifact was reduced by about 94% compared to before the application, and the case where the aluminum shielding band was applied was also reduced by about 92% compared to before application. In addition, the scan time also increased by more than 3 times in the case of the over-sampling technique, while it was found that there was no change from before the application of the aluminum shielding band Therefore, it was confirmed that the shielding band using aluminum foil can effectively remove aliasing artifacts without increasing the scan time..

A Study on the Transition and Characteristics of Convergence Design Furniture (융합디자인 가구의 변천과 특성에 관한 연구)

  • Kim, Mi-Sook;Kang, Hwa-Seon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.137-143
    • /
    • 2018
  • The 4th industrial revolution will have brought smart furniture integrated with IT technology and provide a convenient and comfortable environment for our lives. Therefore, this study analyzed the design characteristics of fusion integrated furniture based on changes of the times. In 20th centuries, characteristic of fusion design was based on architectural structure, new material and function. In 21st centuries, smart home furniture and network system was developed based on IT technology. In addition, due to the increase of single-person households and various consumer purchasing patterns, combined functions for small spaces and multi-function furniture was also developed. In conclusion, the trends of convergence design furniture from 20 to 21st century showed that furniture industry has a significant potential for high-tech technology. This study may be a useful information in developing convergence design furniture industry.

The Characteristic of Hybrid X-ray Sensor for Synchrotron Radiation image (싱크로트론 방사선 영상 획득을 위한 Hybrid 기반의 X선 센서 제작 및 특성)

  • Cha, Byong-Yoel;Kang, Sang-Sick;Kim, So-Young;Yoon, Kyoung-Jun;Mun, Chi-Woong;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.68-71
    • /
    • 2004
  • 본 연구는 싱크로트론 방사광의 단색광 (monobeam)을 이용한 영상을 획득하였다. 영상센서로서 CMOS를 사용하였으며 센서 앞단에는 형광체 (phosphor)를 이용하여 방사광에 대한 빛의 신호로서 영상을 획득하였다. 사용된 싱크로트론 방사광의 beam size는 $5mm{\times}2mm$ 이며 ion chamber를 통한 beam intensity 는 $10{\times}10^{-7}$이다. 형광체는 각각 ZnS(Cu:Al), ZnS(Ag,Al), $BiTiO_3$, $Y_2O_2S(Tb)$로서 4가지를 사용하였으며 여기에 사용된 형광체는 기계식 스크린 프린팅 (Screen Printing) 방식으로 직접 제조하였다. 두께는 모두 동일하게 $10{\mu}m$이며 각각에 대한 PL(Photoluminescence)을 측정하여 분석하였다. object로는 물고기와 20linepair를 사용하였으며 CMOS센서를 이용하여 각각의 phosphor에 대하여 영상을 획득하였다. 영상의 평가는 20line pair 영상의 MTF를 이용하였다. 각각의 형광체에 대한 MTF는 5 lp/mm 에서는 0.5650, 0.2150, 0.7890, 0.3840 이며 10 lp/mm 은 0.4500, 0.0900, 0.2510, 0.1500이고 15 lp/mm 는 0.1900, 0.0300, 0.1430, 0.0500이며 마지막으로 20 lp/mm 은 0.0810, 0.004, 0.0500, 0.0320의 MTF 값을 나타내었다. $10{\mu}m$ 두께에 대하여 ZnS(Cu:Al)이 가장 좋은 MTF의 값을 나타내었다.

  • PDF

Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens

  • Ahmed, Hasan;Lee, Young-Jun;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.657-666
    • /
    • 2020
  • A rotational pulse-echo ultrasonic propagation imager that can inspect cylindrical specimens for material nondestructive evaluations is proposed herein. In this system, a laser-generated ultrasonic bulk wave is used for inspection, which enables a clear visualization of subsurface defects with a precise reproduction of the damage shape and size. The ultrasonic waves are generated by a Q-switched laser that impinges on the outer surface of the specimen walls. The generated waves travel through the walls and their echo is detected by a Laser Doppler Vibrometer (LDV) at the same point. To obtain the optimal Signal-to-Noise Ratio (SNR) of the measured signal, the LDV requires the sensed surface to be at a right angle to the laser beam and at a predefined constant standoff distance from the laser head. For flat specimens, these constraints can be easily satisfied by performing a raster scan using a dual-axis linear stage. However, this arrangement cannot be used for cylindrical specimens owing to their curved nature. To inspect the cylindrical specimens, a circular scan technology is newly proposed for pulse-echo laser ultrasound. A rotational stage is coupled with a single-axis linear stage to inspect the desired area of the specimen. This system arrangement ensures that the standoff distance and beam incidence angle are maintained while the cylindrical specimen is being inspected. This enables the inspection of a curved specimen while maintaining the optimal SNR. The measurement result is displayed in parallel with the on-going inspection. The inspection data used in scanning are mapped from rotational coordinates to linear coordinates for visualization and post-processing of results. A graphical user interface software is implemented in C++ using a QT framework and controls all the individual blocks of the system and implements the necessary image processing, scan calculations, data acquisition, signal processing and result visualization.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.