• Title/Summary/Keyword: imaging, three-dimensional

Search Result 692, Processing Time 0.029 seconds

Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

  • Guerrero, Maria Eugenia;Noriega, Jorge;Castro, Carmen;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • Purpose: The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. Materials and Methods: One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image data-sets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. Results: All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Conclusion: Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

Three Dimensional Confocal Imaging and Biomedical Image Analysis (3차원 Confocal Imaging과 생체 영상 분석)

  • Lee, Yim-Kul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.257-261
    • /
    • 1995
  • Confocal laser scanning microscopy (CLSM)는 기존의 coherent or incoherent microscopic imaging 보다 횡축 방향 (lateral direction)으로 고해상도를 가지며, 층과 층 사이를 구분하는 광축 방향 (axial direction)의 optical sectioning에 의해 샘플의 3D 구조를 고해상도로 영상화함으로써 3D 구조 및 생체 기능 분석을 가능하게 해 준다. 본 논문에서는 CLSM에 의한 3D 영상화 원리와 촛점면 부근에서 얻어지는 광세기 분포, 얻어진 2D slice 영상의 시각화 및 응용에 대해 논의된다.

  • PDF

Computational reconstruction techniques in integral imaging by use of a lenslet array

  • Shin, Dong-Hak;Kim, Eun-Soo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1588-1591
    • /
    • 2005
  • In this paper, we propose novel computational reconstruction technique of three-dimensional objects in integral imaging by use of a lenslet array. We applied our technique to two different integral imaging systems according the distance between lenslet array and elemental image plane. Experimental results are presented and discussed as well.

  • PDF

Analysis of the depth limitation for curved lens array system based on integral imaging

  • Kim, Yun-Hee;Park, Jae-Hyeung;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1595-1598
    • /
    • 2005
  • Integral imaging attracts much attention as an autostereoscopic three-dimensional (3D) display technique for its many advantages. Recently the method that uses a curved lens array with a curved screen has been reported to overcome the limitation of viewing angle in integral imaging. This method widens the viewing angle remarkably. However, to understand the proposed system we need to know how the depth is limited in the proposed method also. We analyze the depth limitation and show the simulation results.

  • PDF

Computer-generated integral imaging system used in virtual reality (가상현실에 이용할 수 있는 컴퓨터 생성 집적 영상 시스템)

  • Seok, Myeong-Hun;Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.158-159
    • /
    • 2005
  • Three-dimensional(3D) integral imaging system which can be used in a virtual reality system is proposed. The proposed system uses a new image mapping algorithm which can achieve the real time processing, which is indispensable for the virtual reality system. 3D images generated by the advanced graphic software such as OpenGL API can be directly used without complex adaptation. Therefore, the computer-generated integral imaging system using the proposed mapping algorithm can be successfully applied to virtual reality.

  • PDF

360-degree Viewable Cylindrical Integral Imaging System Using Electroluminescent Films

  • Jung, Jae-Hyun;Park, Gil-Bae;Kim, Yun-Hee;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1254-1257
    • /
    • 2009
  • A 360-degree viewable three-dimensional display based on integral imaging is proposed. The cylindrically arranged point light source array which is generated by electroluminescent (EL) pinhole film reconstructs 360-degree viewable virtual 3D image at the center of the cylinder. In this paper, the principle of operation and experimental results are presented.

  • PDF

360-degree Viewable Cylindrical Integral Imaging System Using Electroluminescent Films

  • Jung, Jae-Hyun;Park, Gil-Bae;Kim, Yun-Hee;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1330-1333
    • /
    • 2009
  • A 360-degree viewable three-dimensional display based on integral imaging is proposed. The cylindrically arranged point light source array which is generated by electroluminescent (EL) pinhole film reconstructs 360-degree viewable virtual 3D image at the center of the cylinder. In this paper, the principle of operation and experimental results are presented.

  • PDF

Stereoscopic Operators and Their Application

  • Gruts, Yu.-N.;Son, Jung-Young;Kang, Dong-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.90-92
    • /
    • 2001
  • Direct and inverse mathematical operators of stereo transformation (stereo operators) are studied in this paper. The stereo operators install a one-to-one correspondence between three dimensional coordinates of any point in space and the stereo coordinates which can be displayed on the screen under the given conditions, i.e. stereo vision base and the position of viewer. The stereo operators can be applied to the analyses of stereoscopic image distortions when the stereo vision base and the position of viewer are changed.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

The role of cone-beam computed tomography in the radiographic evaluation of obstructive sleep apnea: A review article

  • Marco Isaac;Dina Mohamed ElBeshlawy;Ahmed ElSobki;Dina Fahim Ahmed;Sarah Mohammed Kenawy
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.283-289
    • /
    • 2023
  • The apnea-hypopnea index is widely regarded as a measure of the severity of obstructive sleep apnea (OSA), a condition characterized by recurrent episodes of apnea or hypopnea during sleep that induce airway collapse. OSA is a catastrophic problem due to the wide range of health issues it can cause, including cardiovascular disease and memory loss. This review was conducted to clarify the roles of various imaging modalities, particularly cone-beam computed tomography (CBCT), in the diagnosis of and preoperative planning for OSA. Unfortunately, 2-dimensional imaging techniques yield insufficient data for a comprehensive diagnosis, given the complex anatomy of the airway. Three-dimensional (3D) imaging is favored as it more accurately represents the patient's airway structure. Although computed tomography and magnetic resonance imaging can depict the actual 3D airway architecture, their use is limited by factors such as high radiation dose and noise associated with the scans. This review indicates that CBCT is a low-radiation imaging technique that can be used to incidentally identify patients with OSA, thereby facilitating early referral and ultimately enhancing the accuracy of surgical outcome predictions.