• Title/Summary/Keyword: imagery

검색결과 1,921건 처리시간 0.04초

Delineation Of Coastal Features And Relative Turbidity Levels In The Mid West Sea Of Korea Using Landsat Imagery

  • Youn, Oong Koo;Lee, Byung Don;Kwak, Hi-Sang
    • 한국해양학회지
    • /
    • 제11권1호
    • /
    • pp.9-17
    • /
    • 1976
  • Multispectral scanner data collected by LANDSAT-1 over the mid West Sea of Korea were analyzed and interpreted for delineation of coastal features and turbidity distribution patterns during different portions of the tidal cycle. Imagery from two successful LANDSAT-1 overpasses of the area in October 1972 and in October 1973 had been used to prepare schematic maps of coastal features and turbidity distributions. Color composite imagery of LANDSAT MSS 4, 5 and 7 gave the best representation of shorelines, coastlines and tidal flats. MSS 5 imagery was most effective in differentiating relative turbidity levels through density slicing techniques. Referring to the tidal power development of Garolim Bay, the basin area measurements assuming dyke construction at the bay entrance, have been carried out on the coastal reature maps comiled from LANDSAT imagery, and those results were correlated with existing data. General areal patterns of surface turbidity distribution in the study area revealed close similarity with bathymetry of the area. Synoptic circulation patterns were also well discriminated from the LANDSAT imagery using the suspended sediment as a tracer.

  • PDF

Effects of Multisensory Cues, Self-Enhancing Imagery and Self Goal-Achievement Emotion on Purchase Intention

  • CHOI, Nak-Hwan;QIAO, Xinxin;WANG, Li
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권1호
    • /
    • pp.141-151
    • /
    • 2020
  • This research aimed at studying the role of self-enhancing imagery and self goal-achievement emotion in the effect of characteristics perceived at advertisements using multisensory cues on purchase intention. Sports shoes advertisement was selected as an empirical research object. Questionnaire survey method was used to collect data. 'WenJuanXing' site was used to make the questionnaire in Chinese, and it was loaded on WeChat and QQ. 260 participants from different regions of China participated in online questionnaire survey. The results of testing the hypotheses by structural equation model in Amos 21.0 program are summarized as followings. The congruency between multisensory cues and self-discrepancy awareness positively evoked the self-enhancing imagery and the self goal-achievement emotion. The object relevance between the consumer and the product advertised did not induce the emotion, but evoked the self-enhancing imagery. Both of the self-enhancing imagery and the self goal-achievement emotion had positive effects on the product purchase intention. When developing advertisement, marketers should focus on multisensory cues' characteristics to enhance the self-enhancing imageries as well as to help feel the goal-achievement emotion. They should pay attention to the ways by which the multisensory cues' characteristics used to develop advertisement can be perceived to be congruent with each other by consumers.

An efficient ship detection method for KOMPSAT-5 synthetic aperture radar imagery based on adaptive filtering approach

  • Hwang, JeongIn;Kim, Daeseong;Jung, Hyung-Sup
    • 대한원격탐사학회지
    • /
    • 제33권1호
    • /
    • pp.89-95
    • /
    • 2017
  • Ship detection in synthetic aperture radar(SAR)imagery has long been an active research topic and has many applications. In this paper,we propose an efficient method for detecting ships from SAR imagery using filtering. This method exploits ship masking using a median filter that considers maximum ship sizes and detects ships from the reference image, to which a Non-Local means (NL-means) filter is applied for speckle de-noising and a differential image created from the difference between the reference image and the median filtered image. As the pixels of the ship in the SAR imagery have sufficiently higher values than the surrounding sea, the ship detection process is composed primarily of filtering based on this characteristic. The performance test for this method is validated using KOMPSAT-5 (Korea Multi-Purpose Satellite-5) SAR imagery. According to the accuracy assessment, the overall accuracy of the region that does not include land is 76.79%, and user accuracy is 71.31%. It is demonstrated that the proposed detection method is suitable to detect ships in SAR imagery and enables us to detect ships more easily and efficiently.

지시적 심상요법이 체외 수정을 받는 여성의 스트레스와 불안에 미치는 효과 (Effects of Guided imagery on Stress and Anxiety of Women Receiving in Vitro Fertilization)

  • 배춘희;장순복;김수;강인수
    • 여성건강간호학회지
    • /
    • 제17권2호
    • /
    • pp.178-186
    • /
    • 2011
  • Purpose: The purpose of this study was to identify effects of guided imagery on stress including cognitive, affective, marital and social, and anxiety among women receiving in vitro fertilization (IVF). Methods: Data were collected between April, 21 and June, 17, 2008. The participants in this study were 57 women (26 for the experimental group, 31 for the control group) receiving IVF for primary or secondary infertility in one of the outpatient infertility centers in Seoul. The guided imagery (Suk, 2001) was provided through audio CD to the experimental group by themselves 8 minutes per day for 2 weeks. Data were analyzed by SPSS 12.0 windows program. Results: After guided imagery, the experimental group showed significantly lower affective stress and total stress scores. Anxiety scores increased significantly in the control group, but not in the experimental group after treatment. Conclusion: The findings suggest that guided imagery is an effective nursing intervention for reducing stress especially affective stress and anxiety among infertile women receiving IVF in outpatient infertility center.

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

NOAA/AVHRR 주간 자료로부터 지면 자료 추출을 위한 구름 탐지 알고리즘 개발 (Development of Cloud Detection Algorithm for Extracting the Cloud-free Land Surface from Daytime NOAA/AVHRR Data)

  • 서명석;이동규
    • 대한원격탐사학회지
    • /
    • 제15권3호
    • /
    • pp.239-251
    • /
    • 1999
  • The elimination process of cloud-contaminated pixels is one of important steps before obtaining the accurate parameters of land and ocean surface from AVHRR imagery. We developed a 6step threshold method to detect the cloud-contaminated pixels from NOAA-14/AVHRR datime imagery over land using different combination of channels. This algorithm has two phases : the first is to make a cloud-free characteristic data of land surface using compositing techniques from channel 1 and 5 imagery and a dynamic threshold of brightness temperature, and the second is to identify the each pixel as a cloud-free or cloudy one through 4-step threshold tests. The merits of this method are its simplicity in input data and automation in determining threshold values. The threshold of infrared data is calculated through the combination of brightness temperature of land surface obtained from AVHRR imagery, spatial variance of them and temporal variance of observed land surface temperature. The method detected the could-comtaminated pixels successfully embedded inthe NOAA-14/AVHRR daytime imagery for the August 1 to November 30, 1996 and March 1 to July 30, 1997. This method was evaluated through the comparison with ground-based cloud observations and with the enhanced visible and infrared imagery.

고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구 (Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field)

  • 유희영;이경도;나상일;박찬원;박노욱
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.621-630
    • /
    • 2017
  • 이 논문에서는 고해상도 다중시기 위성영상을 이용한 밭작물 재배지 분류 가능성을 확인하기 위해 마늘과 양파 주산지를 대상으로 분류를 수행하였다. 마늘과 양파의 생육주기에 맞춰 영상을 수집하고 단일시기와 다양한 다중시기 자료의 조합으로 분류를 시도하였다. 단일시기 자료의 경우 파종이 모두 끝난 시기인 12월과 작물이 활발히 자라기 시작하는 3월 영상을 이용하였을 때 높은 분류 정확도를 보였다. 한편, 단일시기 자료 보다는 다중시기 자료를 이용하였을 때 더 높은 분류 정확도를 보였는데 자료의 수가 많은 것이 무조건 높은 분류 정확도를 반영하지는 않았다. 오히려 파종 시기 또는 파종 직후의 영상은 분류 정확도를 떨어뜨리는 역할을 하였고 마늘과 양파의 성장기인 3, 4, 5월 영상을 동시에 이용하여 분류하였을 때 가장 높은 분류 정확도를 얻었다. 따라서, 다중시기 위성영상을 이용하여 마늘과 양파를 분류하기 위해서는 작물 주요 성장기의 영상 확보가 매우 중요하다는 것을 확인할 수 있었다.

다종 위성영상을 활용한 재난대응 방안 연구 (Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery)

  • 박종수;이달근;이준우;천은지;정하규
    • 대한원격탐사학회지
    • /
    • 제39권5_2호
    • /
    • pp.755-770
    • /
    • 2023
  • 최근 심각한 기후변화, 기상이상 현상 등으로 인해 자연재난의 발생빈도 및 규모가 증가하고 있다. 대형화 재난 발생 시 시간·경제적 제약으로 인해 인공위성, 드론 등 원격탐사 기반의 재난관리의 필요성이 대두되고 있다. 본 연구에서는 재난 발생 시 활용가능한 국내·외 위성들과 최근 우주산업 활성화에 따라 운용 중 및 개발 중인 차세대중형위성, 초소형위성의 현황과 대량의 위성영상들의 활용 기술 동향에 대해 정리하였다. 분석 기술로는 딥러닝의 근간인 인공지능 기술을 접목한 연구들이 있으며, 사용자 중심의 분석 준비 데이터(analysis ready data)를 활용할 수 있는 주요 플랫폼을 소개하였다. 또한 최근 발생된 대형재난인 홍수, 산사태, 가뭄, 산불을 중심으로 위성영상을 활용하여 피해분석을 함으로써 재난관리에 어떻게 활용될 수 있는지에 대해 확인하였다. 마지막으로 개발될 위성을 고려하여 재난 관리 단계별 활용방안에 대해 제시하였다. 본 연구를 통해 위성개발 및 운영현황, 최신 위성영상 분석기술 동향과 다종 위성영상을 활용한 재난대응 방안에 대해 제시되었다. 재난 진행단계에서는 예방과 대비 보다는 대응과 복구에 대한 위성영상의 활용도가 높은 것을 확인할 수 있었다. 향후 다종의 영상이 수급되었을 때 효과적인 재난관리를 위해 인공지능, 딥러닝 등 최신기술 융합 방안과 적용 가능성에 대한 연구를 수행할 예정이다.

지역적 특성에 따른 정사영상의 정확도 분석 (Accuracy Analysis of Ortho Imagery with Different Topographic Characteristic)

  • 조현욱;박준규
    • 한국지리정보학회지
    • /
    • 제11권1호
    • /
    • pp.80-89
    • /
    • 2008
  • 위성영상을 이용한 지도제작 분야는 입체영상 획득이 가능한 SPOT 위성이 발사되면서 이에 대한 정량적인 분석이 가능해졌다. 특히, 고해상도 위성영상은 항공사진촬영이 불가능하여 대축척 지도제작이 곤란한 지역 또는 지상기준점 측량이 불가능한 지역에 대한 수치지도 제작 분야에 있어서 효율적인 방법으로 주목을 받고 있다. 이에 본 연구에서는 미국 국가지형공간정보국(NGA;The National Geospatial-Intelligence Agency)에서 제공하는 정사영상 자료를 이용하여 지역적 특성을 고려한 지형정보를 추출하고 이에 대한 평면위치 정확도를 분석하였다. 이를 위해 일정한 크기로 타일링된 정사영상에 대해 국토지리정보원에서 제공하는 축척 1:5000 수치지도를 기준으로 지역적 특성에 따른 정확도를 평가하였고 이를 바탕으로 비접근 지역의 지형정보 획득을 위한 기 구축 정사영상의 활용 가능성을 제시하고자 하였으며 비접근 및 난접근 지역에서의 지상기준점 획득에 대한 제한을 극복하는 수단으로 본 연구의 결과를 활용하고자 하였다.

  • PDF