교통사고자료를 기반으로 한 사고예측모형의 개발은 사고 발생 후의 처리 측면이 보다 강하며, 교통사고 이력자료(historical data)의 취득이 쉽지않고, 경찰에 보고된 교통사고 건수와 실제 발생한 교통사고 건수와는 불일치하는 경우가 빈번히 발생한다. 또한, 교통사고 이력자료는 운전자의 인적측면이나 현장상황을 보다 현실적으로 고려하기에 어려운 단점이 있다. 근본적인 교차로에서의 안전도 향상을 위해서는 사고발생 이전에 처리할 수 있는 방법의 개발이 필요하다. 교통상충 판단기법은 적은 시간과 한정된 공간에서 조사를 통해 자료를 취득하고 분석할 수 있다는 장점이 있다. 그러나 기존에 이루어지던 수동적인 분석방법은, 분석자의 주관이 반영되기 쉬운 측면이 존재하기 때문에 보다 정밀하고 정확한 교차로의 안전도를 판단하는 지표로 교통상충기법을 이용하기에는 한계가 있음을 확인하였다. 또한, 기존의 교통상충기법은 사고 및 상충이 가지는 심각도에 대한 고려가 부족한 측면이 중요한 단점으로 분석되었다. 이에 본 연구에서는 교통상충을 분석하는데 있어 각 유형별로 상충 심각도를 고려하여 상충을 판단할 수 있는 판단기준을 제시하고, 조사자의 주관이 개입됨으로써 발생할 수 있는 분석의 오류를 제거하기 위하여 영상처리기반의 개별차량 추적기법을 이용하였다. 영상처리기반의 개별차량 추적기법을 이용하여 신호교차로에서 신호위반시 주로 발생하는 대향좌회전 상충과 교차교통 상충에 대한 상충판단알고리즘을 개발하였다. 본 연구에서 개발한 교통상충 판단기준의 적용을 위하여 경기도 성남시의 2개 교차로와 파주시의 1개 교차로의 영상을 취득하여 각각 30분간 분석을 수행하였다. 분석결과, 3개 교차로에서 총 343건의 1단계 상충(신호위반) 상황이 검지되었으며, 이 중 총 25건이 3단계 상충(심각한 상충)으로 발전된 것을 확인하였다. 이를 통하여, 사고발생 이전에 발생하게 되는 상충상황의 분석을 통하여 사고다발지점 등 교차로의 안전도를 평가할 수 있는 대안으로 사용이 가능함을 확인하였다.
본 논문은 모바일 상에서 GPS와 전자지도를 이용하여 차량 및 이동물체의 위치를 실시간 및 시뮬레이션 동작 모드로 전자지도상에 보여주는 시스템을 구현하였다 또한, 모바일 단말기 일종의 하나인 PDA에 부착되어 있는 카메라를 통하여 입력되는 차량을 자동으로 인식, 검증하는 모바일 영상처리 기술을 이용하여 차량 번호를 검출하고 무선 통신망을 통해 원격 서버에 차량의 위치와 모바일 단말기의 위치 정보를 함께 전송함으로써 GPS에 의하여 지형 및 위치 정보를 측정하고 PDA와 무선 통신을 이용하여 실시간으로 전송함으로써 차량의 정보를 효과적으로 획득할 수 있다. 이는 위치 정보의 획득과 차량의 위치를 실시간으로 중앙관제소에 전송하고 이를 도면화한다. GPS에 의한 위치정보획득과 PDA에 의한 영상처리를 활용하여 정확한 차량의 위치 및 위치정보를 측정하고 중앙관제소로 전송하여 관제소에서 차량의 유형, 이상여부 및 위치 정보를 실시간으로 획득하여 각종 정보에 이용하며, 이러한 특성 정보를 통해 적합한 위치를 추적이 가능한 임베디드형 시스템을 구현한다.
최근 급속도로 성장하고 있는 인공지능 기술이 자율운항선박과 같은 해상 환경에서도 적용되기 시작하면서 디지털 영상에 특화된 CNN 기반의 모델을 적용하는 관련 연구가 활발히 진행되고 있다. 이러한 해상 서비스의 경우 인적 과실을 줄이기 위해 충돌 위험이 있는 부유물을 감지하거나 선박 내부의 화재 등 여러 가지 기술이 접목되기에 실시간 처리가 매우 중요하다. 그러나 기능이 추가될수록 프로세서의 제품 가격이 증가하는 문제가 존재해 소형 선박의 선주들에게는 비용적인 측면에서 부담이 된다. 또한 대형 선박의 경우 자율운항선박의 시스템을 감안할 때, 연산 속도의 성능 향상을 위해 복잡도가 높은 딥러닝 모델의 성능을 개선하는 방법이 필요하다. 따라서 본 논문에서는 딥러닝 모델에 경량화 기법을 적용해 정확도를 유지하면서 고속으로 처리할 수 있는 방법에 대해 제안한다. 먼저 해상 부유물 검출에 적합한 영상 전처리를 진행하여 효율적으로 CNN 기반 신경망 모델 입력에 영상 데이터가 전달될 수 있도록 하였다. 또한, 신경망 모델의 알고리즘 경량화 기법 중 하나인 학습 후 파라미터 양자화 기법을 적용하여 모델의 메모리 용량을 줄이면서 추론 부분의 처리 속도를 증가시켰다. 양자화 기법이 적용된 모델을 저전력 임베디드 보드에 적용시켜 정확도와 처리 속도를 사용하는 임베디드 성능을 고려하여 설계하는 방법을 제안한다. 제안하는 방법 중 정확도 손실이 제일 최소화되는 모델을 활용해 저전력 임베디드 보드에 비교하여 기존보다 최대 4~5배 처리 속도를 개선할 수 있었다.
본 연구는 금관가야가 위치한 김해지역에서 출토된 유리구슬을 중심으로 색상, 크기 및 형태, 열처리 등 외형적 특징과 비파괴 분석을 통하여 화학 조성을 융제, 안정제, 착색제 특성으로 분류해 보았다. 금관가야 유리구슬 129점은 8가지 색상 계통으로 분류되며 이 중에서 67% 점유하는 감청색이 대표적인 색상이다. 크기는 외경을 기준으로 3가지로 구분한 결과, 시기가 지남에 따라 대형화하는 양상을 보인다. 형태는 내경과 직경을 기준으로 대롱형, 둥근형, 도넛형으로 구분되며 둥근형이 대표적이다. 늘린기법으로 제작된 유리구슬 단면은 열처리 정도에 3가지 유형이 확인된다. 구슬 양끝이 모두 열처리된 HT-III형이 주류이고 다른 유형에 비하여 열처리 기술이 높은 단계로 추정된다. 비파괴분석에서 확인되는 화학 조성은 포타쉬유리군 63점과 소다유리군 9점이다. 고찰 결과, 금관가야 유리구슬은 색상, 크기, 형태, 제작기법을 포함한 외형적 특징은 화학 조성과 상관성을 보이며 시기별, 지역별에 따른 특징이 나타난다.
본 논문에서는 3D(dimensional) 스켈레톤을 이용하여 다시점 RGB-D 카메라를 캘리브레이션 하는 새로운 기법을 제안하고자 한다. 다시점 카메라를 캘리브레이션 하기 위해서는 일관성 있는 특징점이 필요하다. 또한 높은 정확도의 캘리브레이션 결과를 얻기 위해서는 정확한 특징점의 획득이 필요하다. 우리는 다시점 카메라를 캘리브레이션 하기 위한 특징점으로 사람의 스켈레톤을 사용한다. 사람의 스켈레톤은 최신의 자세 추정(pose estimation) 알고리즘들을 이용하여 쉽게 구할 수 있게 되었다. 우리는 자세 추정 알고리즘을 통해서 획득된 3D 스켈레톤의 관절 좌표를 특징점으로 사용하는 RGB-D 기반의 캘리브레이션 알고리즘을 제안한다. 다시점 카메라에 촬영된 인체 정보는 불완전할 수 있기 때문에, 이를 통해 획득된 영상 정보를 바탕으로 예측된 스켈레톤은 불완전할 수 있다. 불완전한 다수의 스켈레톤을 효율적으로 하나의 스켈레톤으로 통합한 후에, 통합된 스켈레톤을 이용하여 카메라 변환 행렬을 구함으로써 다시점 카메라들을 캘리브레이션 할 수 있다. 캘리브레이션의 정확도를 높이기 위해서 시간적인 반복을 통해서 다수의 스켈레톤을 최적화에 이용한다. 우리는 실험을 통해서 불완전한 다수의 스켈레톤을 이용하여 다시점 카메라를 캘리브레이션 할 수 있음을 증명한다.
본 논문에서는 Needle-punched C/SiC 복합재료 해석을 위한 효율적인 멀티스케일 해석기법을 소개한다. 기존 Needle-punching으로 인해 복잡한 미소구조를 갖는 NP 복합재료는 기존의 제안된 복합재료 멀티스케일 기법으로 물성을 계산하는 것은 한계가 있어 왔다. 이를 극복하기 위해 micro-CT 이미지 촬영을 통해 NP 복합재료의 미소구조를 면밀히 파악할 수 있었고, 이미지 프로세싱을 바탕으로 실제구조와 직접적으로 대응할 수 있는 3D high fidelity 모델을 구축하였다. 또한 유한요소해석에 맞춰 요소크기를 조절할 수 있는 sub-region processing 소개를 바탕으로 효율적인 유한요소해석을 수행하였다. NP 복합재료의 미소구조 거동뿐만 아니라, macro-scale 구조해석의 적용을 위해 subcell 모델링을 제안하였다. Needle-punching에 의한 Z축 NP 섬유의 규칙적인 간격을 이용하여 모델링을 수행할 수 있었다. 제안한 두 종류의 모델은 균질화 기법을 이용하여 등가거동 및 등가물성을 파악하였으며, 추가적인 실험 결과와의 비교를 통해 검증을 수행하였다.
2D 객체 감지 시스템은 최근 몇 년 동안 심층 신경망과 대규모 이미지 데이터세트의 사용으로 크게 개선되었지만, 아직도 범주 내에서 데이터 부족, 다양한 외관 및 객체 형상 때문에 자율 탐색 등과 같은 로봇 공학과 관련된 응용에서 2D 물체 감지 시스템은 적절하지 않다. 최근에 소개되고 있는 구글 Objectron 또한 증강 현실 세션 데이터를 사용하는 새로운 데이터 파이프라인이라는 점에서 도약이라 할 수 있지만, 3D 공간에서 2D 객체 이해라는 측면에서 마찬가지로 한계가 있다. 이에 본 연구에서는 더 성숙한 2D 물체 감지 방법을 Objectron에 도입하는 3D 물체 감지 시스템을 나타낸다. 대부분의 객체 감지 방법은 경계 상자를 사용하여 객체 모양과 위치를 인코딩한다. 본 작업에서는 가우스 분포를 사용하여 객체 영역의 확률적 표현을 탐색하는데, 일종의 확률적 IoU라 할 수 있는 Hellinger 거리를 기반으로 하는 가우스 분포에 대한 유사성 측도를 제시한다. 이러한 2D 표현은 모든 객체 감지기에 원활하게 통합할 수 있으며, 실험 결과 데이터 집합에서 주석이 달린 분할 영역에 더 가까워서 Objectron의 단점이라 할 수 있는 3D 감지 정확도를 높일 수 있다.
스테가노그래피(Steganography)란 다양한 멀티미디어 파일에 비밀 메시지를 숨기는 은닉 기법을 말하며, 스테가노그래피 기반의 은닉 통신을 할 때 송신자와 수신자 외에 제 3자는 통신 메시지에 은닉 정보의 존재 여부를 식별하기 매우 어렵다는 장점으로 인해 사이버범죄와 공격에 많이 악용되고 있다. 봇넷은 일반적으로 봇마스터, 봇, 그리고 C&C(Command & Control) 서버로 구성되고 봇마스터에 의해 통제되는 네트워크이며, 중앙집중형, 분산형(P2P), 그리고 하이브리드형 등 다양한 구조를 갖고 있다. 최근에는 봇넷의 은닉성을 강화하기 위해 SNS 플랫폼을 C&C 서버 대신 활용하고 스테가노그래피 기법을 적용하여 C&C 통신을 수행하는 스테고 봇넷(Stego Botnet)에 대한 연구가 활발히 진행되고 있으나, 이미지 또는 비디오 매체 위주의 스테고 봇넷 기법들이 연구되어왔다. 한편, SNS 상에서는 다양한 음원 및 녹음 파일 등과 같은 오디오 파일 역시 활발히 공유되고 있어 오디오 스테가노그래피 기반의 스테고 봇넷에 대한 연구가 필요하다. 따라서, 본 연구에서는 텔레그램 메신저(Telegram Messenger)에서 오디오 파일을 커버 매체로 하고 스테기노그래피 기법을 활용하여 C&C 은닉 통신을 수행하는 스테고 봇넷을 설계 및 구축하고 실험을 통해 파일 형식별, 툴별 은닉용량에 대해 비교 분석한 결과를 제시한다.
상·하수도 시스템은 사람들에게 안전하고 깨끗한 물을 공급해주는 사회기반시설이며, 특히 상·하수도 관로는 지중에 매설되어 있기 때문에 시스템의 결함검출이 매우 어렵다. 이러한 이유로 상·하수도 관로의 진단은 관로 내부에 카메라 및 드론을 통한 촬영을 하여 사후에 촬영된 영상을 바탕으로 시스템 진단하는 등의 사후 결함검출로 제한되기 때문에, 작업자의 업무 효율 증대와 진단의 신속성을 위해서는 관로의 실시간 탐지기술이 필요하다. 최근 첨단장비 및 인공지능 기법을 활용한 시설물 진단 기술이 개발되고 있지만, 인공지능기반 결함검출 기술은 결함 데이터의 종류 및 형태, 수가 검출 성능에 영향을 주기 때문에 다양한 학습데이터가 필요하다. 따라서, 본 연구에서는 상·하수도 관로의 결함검출 시 탐지 성능 향상을 위해 다양한 결함 시나리오를 3D 프린트를 이용하여 구현하고 이를 수집된 결함 데이터와 함께 학습데이터로 사용한다. 이후 수집된 이미지는 위험도에 따른 분류 및 객체의 라벨링 등의 전처리 작업이 수행되고 실시간 결함탐지를 수행한다. 제안된 기법은 상·하수도시스템 결함검출 시 실시간 피드백을 제공함으로써, 작업자의 진단 누락 가능성을 최소화하며 기존의 상·하수도관 진단업무 처리능력을 향상할 수 있다.
현미경용 플렌옵틱 광학 시스템은 일반적으로 대물 렌즈, 튜브 렌즈, 마이크로 렌즈 어레이, 그리고 이미지 센서로 구성된다. 플렌옵틱을 통한 라이트 필드 이미징에서 튜브 렌즈와 마이크로 렌즈 어레이 간의 수치 구경을 일치시키고, 이를 바탕으로 공간분해능 및 피사계심도 등의 성능 지표를 예측한다. 하지만 상업적 마이크로 렌즈 어레이 적용시 이러한 수치 구경 일치에 어려움이 있어, 본 논문에서는 기존에 보고된 성능 예측 수식을 수치 구경이 일치하지 않는 경우까지 확장하고, 전산 시뮬레이션을 통한 성능 예측 기법을 제시하며, 이를 수치 구경 일치화가 이루어진 10배율 및 수치 구경 불일치가 발생한 20배율 대물렌즈가 적용된 두 개의 플렌옵틱 광학계 개발 및 실험을 통하여 검증하였다. 10배율 및 20배율 시스템은 확장식에서 각각 12.5 ㎛, 6.2 ㎛의 공간 분해능과 530 ㎛, 88 ㎛의 피사계심도를 가지며, 시뮬레이션에서는 각각 11.5 ㎛, 5.8 ㎛의 공간분해능과 510 ㎛, 70 ㎛의 피사계심도를, 실험에서는 각각 11.1 ㎛, 5.8 ㎛의 공간 분해능과 470 ㎛, 70 ㎛의 피사계심도를 가진다. 확장식 및 시뮬레이션 모두 실험 값과 유사한 결과를 보여 시스템 설계에서는 두 가지 방법 모두 적절할 것으로 판단된다. 다만 피사계심도 예측 정확성에 있어서는 시뮬레이션에 의한 예측이 실험 값과 좀 더 유사하므로, 실제 제작에 앞서 시뮬레이션에 의한 성능 예측을 추천한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.