• Title/Summary/Keyword: image vector

Search Result 1,580, Processing Time 0.031 seconds

An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 클러스터링을 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Kang, Hwan-Il;Jang, Woo-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.7-11
    • /
    • 2007
  • In this paper the one of image hide method for good compression ratio and satisfactory image quality of the cover image and the embedding image based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering is introduced. Experimental result shows that the embedding image has invisibility and robustness to various serious attacks.

  • PDF

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

Cardio-Angiographic Sequence Coding Using Neural Network Adaptive Vector Quantization (신격회로망 적응 VQ를 이용한 심장 조영상 부호화)

  • 주창희;최종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.374-381
    • /
    • 1991
  • As a diagnostic image of hospitl, the utilization of digital image is steadily increasing. Image coding is indispensable for storing and compressing an enormous amount of diagnostic images economically and effectively. In this paper adaptive two stage vector quantization based on Kohonen's neural network for the compression of cardioangiography among typical angiography of radiographic image sequences is presented and the performance of the coding scheme is compare and gone over. In an attempt to exploit the known characteristics of changes in cardioangiography, relatively large blocks of image are quantized in the first stage and in the next stage the bloks subdivided by the threshold of quantization error are vector quantized employing the neural network of frequency sensitive competitive learning. The scheme is employed because the change produced in cardioangiography is due to such two types of motion as a heart itself and body motion, and a contrast dye material injected. Computer simulation shows that the good reproduction of images can be obtained at a bit rate of 0.78 bits/pixel.

  • PDF

Multiple Pedestrians Detection using Motion Information and Support Vector Machine from a Moving Camera Image (이동 카메라 영상에서 움직임 정보와 Support Vector Machine을 이용한 다수 보행자 검출)

  • Lim, Jong-Seok;Park, Hyo-Jin;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • In this paper, we proposed the method detecting multiple pedestrians using motion information and SVM(Support Vector Machine) from a moving camera image. First, we detect moving pedestrians from both the difference image and the projection histogram which is compensated for the camera ego-motion using corresponding feature sets. The difference image is simple method but it is not detected motionless pedestrians. Thus, to fix up this problem, we detect motionless pedestrians using SVM The SVM works well particularly in binary classification problem such as pedestrian detection. However, it is not detected in case that the pedestrians are adjacent or they move arms and legs excessively in the image. Therefore, in this paper, we proposed the method detecting motionless and adjacent pedestrians as well as people who take excessive action in the image using motion information and SVM The experimental results on our various test video sequences demonstrated the high efficiency of our approach as it had shown an average detection ratio of 94% and False Positive of 2.8%.

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

Moving Pixel Displacement Detection using Correlation Functions on CIS Image

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Moving pixel displacement detection algorithm using correlation functions for making panorama image on the continuous images is presented in this paper. The input images get from a CMOS image sensor (CIS). The camera is maintained by constant brightness and uniform sensing area in test input pattern. For simple navigation and capture image has to 70% overlapped region. A correlation rate in two image data is evaluated by using reference image with first captures, and compare image with next captures. The displacement of the two images are expressed to second order function of x, y and solved with finding the coefficient in second order function. That results in the change in the peak correlation displacement from the reference to the compare image, is moving to pixel length. The navigating error is reduced by varying the path because the error is shown in the difference of the positioning vector between the true pixel position and the navigated pixel position. The algorithm performance is evaluated to be different from the error vector to vary the navigating path grid.

An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Jang, Woo-Seok;Kang, Hwan-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.964-969
    • /
    • 2007
  • In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.

Image Retrieval using Statistical Property of Projection Vector (투영벡터의 통계적성질을 이용한 영상 검색)

  • 권동현;김용훈;배성포;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1044-1049
    • /
    • 2000
  • Projection that can be used as a feature for image representation, includes much available informations such as approximated shape and location. But when we retrieve image using it, there are some disadvantage such as requiring much index data and making different length of projected vector for differenr image size. In order to overcome these problems, we propose a method of using block variance for the projected vector. We use block variance of the projection vector to localize the characteristics of image and to reduce the number of index data in database. Proposed algorithm can make use of statistical advantage through database including various size of images and be executed with fast response time in implementation.

  • PDF

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

Emotion Recognition Using Eigenspace

  • Lee, Sang-Yun;Oh, Jae-Heung;Chung, Geun-Ho;Joo, Young-Hoon;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.111.1-111
    • /
    • 2002
  • System configuration 1. First is the image acquisition part 2. Second part is for creating the vector image and for processing the obtained facial image. This part is for finding the facial area from the skin color. To do this, we can first find the skin color area with the highest weight from eigenface that consists of eigenvector. And then, we can create the vector image of eigenface from the obtained facial area. 3. Third is recognition module portion.

  • PDF