• Title/Summary/Keyword: image vector

Search Result 1,580, Processing Time 0.027 seconds

Medical Image Registration by Combining Gradient Vector Flow and Conditional Entropy Measure (기울기 벡터장과 조건부 엔트로피 결합에 의한 의료영상 정합)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Kim, Sun-Worl;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.303-308
    • /
    • 2010
  • In this paper, we propose a medical image registration technique combining the gradient vector flow and modified conditional entropy. The registration is conducted by the use of a measure based on the entropy of conditional probabilities. To achieve the registration, we first define a modified conditional entropy (MCE) computed from the joint histograms for the area intensities of two given images. In order to combine the spatial information into a traditional registration measure, we use the gradient vector flow field. Then the MCE is computed from the gradient vector flow intensity (GVFI) combining the gradient information and their intensity values of original images. To evaluate the performance of the proposed registration method, we conduct experiments with our method as well as existing method based on the mutual information (MI) criteria. We evaluate the precision of MI- and MCE-based measurements by comparing the registration obtained from MR images and transformed CT images. The experimental results show that the proposed method is faster and more accurate than other optimization methods.

Median Filtering Detection of Digital Images Using Pixel Gradients

  • RHEE, Kang Hyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.195-201
    • /
    • 2015
  • For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

Multiple Pedestrians Detection and Tracking using Color Information from a Moving Camera (이동 카메라 영상에서 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • Lim, Jong-Seok;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.317-326
    • /
    • 2004
  • This paper presents a new method for the detection of multiple pedestrians and tracking of a specific pedestrian using color information from a moving camera. We first extract motion vector on the input image using BMA. Next, a difference image is calculated on the basis of the motion vector. The difference image is converted to a binary image. The binary image has an unnecessary noise. So, it is removed by means of the proposed noise deletion method. Then, we detect pedestrians through the projection algorithm. But, if pedestrians are very adjacent to each other, we separate them using RGB color information. And we track a specific pedestrian using RGB color information in center region of it. The experimental results on our test sequences demonstrated the high efficiency of our approach as it had shown detection success ratio of 97% and detection failure ratio of 3% and excellent tracking.

Efficient Multispectral Image Compression Using Variable Block Size Vector Quantization (가변 블럭 벡터 양자화를 이용한 효율적인 다분광 화상 데이터 압축)

  • Ban, Seong-Won;Kim, Byeong-Ju;Seok, Jeong-Yeop;Gwon, Seong-Geun;Gwon, Gi-Gu;Kim, Yeong-Chun;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.703-711
    • /
    • 2001
  • In this paper, we propose efficient multispectral image compression using variable block size vector quantization (VQ). In wavelet domain, we perform the variable block size VQ to remove intraband redundancy for a reference band image that has the lowest spatial variance and the best correlation with other band. And in wavelet domain, we perform the classified interband prediction to remove interband redundancy for the remaining bands. Then error wavelet coefficients between original image and predicted image are residual variable block size vector quantized to reduce prediction error. Experiments on remotely sensed satellite image show that coding efficiency of the proposed method is better than that of the conventional method.

  • PDF

Representative Feature Extraction of Objects using VQ and Its Application to Content-based Image Retrieval (VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용 기반 영상 검색)

  • Jang, Dong-Sik;Jung, Seh-Hwan;Yoo, Hun-Woo;Sohn, Yong--Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.724-732
    • /
    • 2001
  • In this paper, a new method of feature extraction of major objects to represent an image using Vector Quantization(VQ) is proposed. The principal features of the image, which are used in a content-based image retrieval system, are color, texture, shape and spatial positions of objects. The representative color and texture features are extracted from the given image using VQ(Vector Quantization) clustering algorithm with a general feature extraction method of color and texture. Since these are used for content-based image retrieval and searched by objects, it is possible to search and retrieve some desirable images regardless of the position, rotation and size of objects. The experimental results show that the representative feature extraction time is much reduced by using VQ, and the highest retrieval rate is given as the weighted values of color and texture are set to 0.5 and 0.5, respectively, and the proposed method provides up to 90% precision and recall rate for 'person'query images.

  • PDF

A Study on Improvement in Digital Image Restoration by a Recursive Vector Processing (순환벡터처리에 의한 디지털 영상복원에 관한 연구)

  • 이대영;이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.105-112
    • /
    • 1983
  • This paper discribes technique of the recursive restoration for the images degraded by linear space invariant blur and additive white Gaussian noise. The image is characterized statistically by tis mean and correlation function. An exponential autocorrelation function has been used to model neighborhood model. The vector model was used because of analytical simplicitly and capability to implement brightness correlation function. Base on the vector model, a two-dimensional discrete stochastic a 12 point neighborhood model for represeting images was developme and used the technique of moving window processing to restore blurred and noisy images without dimensionality increesing, It has been shown a 12 point neighborhood model was found to be more adequate than a 8 point pixel model to obtain optimum pixel estimated. If the image is highly correlated, it is necessary to use a large number of points in the neighborhood in order to have improvements in restoring image. It is believed that these result could be applied to a wide range of image processing problem. Because image processing thchniques normally required a 2-D linear filtering.

  • PDF

Real-time Detection Technique of the Target in a Berth for Automatic Ship Berthing (선박 자동접안을 위한 정박지 목표물의 실시간 검출법)

  • Choi, Yong-Woon;;Kim, Young-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.431-437
    • /
    • 2006
  • In this paper vector code correlation(VCC) method and an algorithm to promote the image-processing performance in building an effective measurement system using cameras are described far automatically berthing and controlling the ship equipped with side-thrusters. In order to realize automatic ship berthing, it is indispensable that the berthing assistant system on the ship should continuously trace a target in the berth to measure the distance to the target and the ship attitude, such that we can make the ship move to the specified location. The considered system is made up of 4 apparatuses compounded from a CCD camera, a camera direction controller, a popular PC with a built-in image processing board and a signal conversion unit connected to parallel port of the PC. The object of this paper is to reduce the image-processing time so that the berthing system is able to ensure the safety schedule against risks during approaching to the berth. It could be achieved by composing the vector code image to utilize the gradient of an approximated plane found with the brightness of pixels forming a certain region in an image and verifying the effectiveness on a commonly used PC. From experimental results, it is clear that the proposed method can be applied to the measurement system for automatic ship berthing and has the image-processing time of fourfold as compared with the typical template matching method.

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF

Karhunen - Loeve Transform -Classified Vector Quantization for Efficient Image Coding (Karhunen-loeve 변환과 분류 벡터 양자화에 의한 효율적인 영상 부호화)

  • 김태용;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.44-52
    • /
    • 1996
  • This paper proposes a KLT-CVQ scheme using PCNN to improbe the quality of the reconstructed images at a given bit rate. By using the PCNN and classified vector quantization, we exploit the high energy compaction and compelte decorrelation capbilities of the KLT, and the pdf (probability density function) shape and space-filling advantages of the vQ to improve the performance of the proposed hybrid coding technique. In order to preserve the preceptual fetures such as the edge components in the reconstructed images, we classified the input image blocks according to the texture energy measures of the local statistics and vector-coded them adaptively, and thereby reduces the possible edge degradation in the reconstructed images. The results of the computer simulations show that the performance of the proposed KLT-CVQ is higher than that of the KLT-CSQ or the DCT-CVQ in the quality of the reconstructed images at a given bit rate.

  • PDF