• Title/Summary/Keyword: image uniformity

Search Result 263, Processing Time 0.024 seconds

Fabrication of a Staircase Coil with Improved SNR and Image Uniformity by Structural Changes of a Conventional Birdcage Coil at 1.5T MRI

  • Ryang, Kyung-Seung;Shin, Yong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.1
    • /
    • pp.25-36
    • /
    • 2003
  • The performance of radio frequency (RF) coils, used in MRI units, is determined by the image uniformity and the signal-to-noise ratio (SNR). Birdcage and surface coils are commonly used. A birdcage coil provides a good image uniformity while a surface coil produces a high SNR. In this study, therefore, a staircase coil was designed from a standard version of a birdcage coil, with some structural changes to increase SNR while maintaining image uniformity. In phantom experiments, the improvement of the image to uniformity and the SNR increase of the staircase coil compared with the values for the birdcage coil were about 3.5% and 35%, respectively. In clinical experiment, the SNR increase of the staircase coil, compared with the value for the birdcage coil was about 40% in bone, muscle and blood-vessel tissues. These results show that the performance of the staircase coil was very improved over the standard birdcage coil in terms of SNR, and that image uniformity was maintained. Therefore, the staircase coil designed by this study should be useful in experimental and clinical l.5T MRI systems, and this coil offers an alternative method of quadrature detection.

  • PDF

A Improved Scene based Non-uniformity Correction Algorithm for Infrared Camera

  • Hyun, Ho-Jin;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • In this paper, we propose an efficient scene based non-uniformity correction algorithm which performs the offset correction using the uniform obtained from input scenes for Infrared camera. In general, pixel outputs of a infrared detector can not be uniform. Therefore, the non-uniformity correction procedure need to be performed to make the image outputs uniform. A typical non-uniformity correction method uses a black body at the laboratory to obtain the output of the infrared detector's pixels for two temperatures, HOT and COLD, and calculates the non-uniformity correction parameters. However, output characteristics of the Infrared detector changes while the Infrared camera is operated, the fixed pattern noise of the Infrared detector and dead pixels are generated. To remove the noise, the offset correction is generally performed. The offset correction procedure usually need the additional device such as a thermo-electric cooler, shutter, or non-uniformity correction lens. Therefore, we introduce a general scene based non-uniformity correction technique without additional equipment, and then we propose an improved non-uniformity correction algorithm based on image to solve the problem of the existing technique.

A Psychophysical Approach to evaluating the perceived image quality of CRT: White Uniformity Quality (CRT 모니터의 감성품질 정량화를 위한 심물리학적 접근: White Uniformity 품질 평가)

  • Lee, Uk-Gi;Kim, Seong-Hwan;Lee, Seon-Gyu;Lee, Gwang-Hui;Kim, Sang-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.59-70
    • /
    • 2001
  • White uniformity is one of the important inspection factors determining the image quality of CRT screen. In the full white pattern, white uniformity means the degree of uniform distribution of white color across the whole screen. To elicit the sensitivity factors affecting the decision of the white uniformity quality, experiments in which participants were confronted with 6 evaluation points embedded in 3 measurement groups on a CRT screen were conducted to gather the psychophysical data that are the level of white uniformity subjects perceived and CA100 produced. These data were used to develop a modified CIE1976 equation for calculating white uniformity. Performance comparison between the original CIE1976 equation and the modified equation was conducted in terms of accuracy test and magnitude estimation. It was concluded the modified equation is more sensitive in the change of white uniformity, compared to the original CIE1976 equation.

  • PDF

Color Correction for Uniformity Illumination using Multispectral Relighting (멀티스펙트럴 재조명을 이용한 균일 조명 색상 보정)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2017
  • In order to accurately perform multispectral imaging using a multiplexed illumination, intensity of illumination in a scene must be uniform. For image acquisition that requires accurate color information, even if not multispectral imaging, the illumination information must be accurate, and a flat light source or illumination calibration is performed for accurate illumination characteristics. In this paper, we propose a method of color correction to uniformly illuminate an image with non-uniform illumination intensity. The proposed method uses multispectral imaging instead of illumination calibration for color correction. First of all, we perform multispectral imaging with two images obtained from non-uniformity illumination to acquire spectral reflectance. The obtained reflection spectrum is relit as the illumination characteristic of the image obtained from general planar light such as fluorescent light or sunlight. By comparing the image obtained by relighting with the uniformly illuminated image, the non-uniformity of the illumination is confirmed, and the color correction is performed as the image obtained from the uniform image. It is expected that the experimental results will confirm whether the non-uniformity of the illumination is uniformly corrected and reduce the restriction of illumination in obtaining the color information of the image.

New Non-uniformity Correction Approach for Infrared Focal Plane Arrays Imaging

  • Qu, Hui-Ming;Gong, Jing-Tan;Huang, Yuan;Chen, Qian
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Although infrared focal plane array (IRFPA) detectors have been commonly used, non-uniformity correction (NUC) remains an important problem in the infrared imaging realm. Non-uniformity severely degrades image quality and affects radiometric accuracy in infrared imaging applications. Residual non-uniformity (RNU) significantly affects the detection range of infrared surveillance and reconnaissance systems. More effort should be exerted to improve IRFPA uniformity. A novel NUC method that considers the surrounding temperature variation compensation is proposed based on the binary nonlinear non-uniformity theory model. The implementing procedure is described in detail. This approach simultaneously corrects response nonlinearity and compensates for the influence of surrounding temperature shift. Both qualitative evaluation and quantitative test comparison are performed among several correction technologies. The experimental result shows that the residual non-uniformity, which is corrected by the proposed method, is steady at approximately 0.02 percentage points within the target temperature range of 283 K to 373 K. Real-time imaging shows that the proposed method improves image quality better than traditional techniques.

Phase Image of Susceptibility Weighted Image Using High Pass Filter Improved Uniformity (위상영상 획득 시 영상의 균일도 향상을 위한 high pass filter의 적용)

  • Lee, Ho-Beom;Choi, Kwan-Woo;Son, Soon-Yong;Na, Sa-Ra;Lee, Joo-Ah;Min, Jung-Whan;Kim, Hyun-Soo;Ma, Sang-Chull;Jeong, Yeon-Jae;Jeong, Yeon-Gyu;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6702-6709
    • /
    • 2014
  • In this study, a susceptibility weighted image (SWI) showed a wrapped phase and a non-uniformity of the rapid susceptibility difference. Consequently, the bandwidth limits at low frequency were improved by applying HPF. From November 2013 to March 2014, a three-dimensional SWI was obtained from patients and compared with the existing images and HPF phase images. The maximum and minimum signal intensity differences and non-uniformity were analyzed. As a result, a high pass filter before and after applying the maximum and minimum of the signal intensity difference was decreased by 274.16% (498.98), and the non-uniformity was decreased by 439.55% (19.83). After applying the HPF, a comparison with the existing phase images revealed the HPF phase images to have high signal and image uniformity of the SWI image. A high pass filter method can effectively remove the non-uniformity and improve the overall image quality.

Design and Analysis of Illumination Optics for Image Uniformity in Omnidirectional Vision Inspection System for Screw Threads (나사산 전면검사 비전시스템의 영상 균일도 향상을 위한 조명 광학계 설계 및 해석)

  • Lee, Chang Hun;Lim, Yeong Eun;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Precision screws have a wide range of industrial applications such as electrical and automotive products. To produce screw threads with high precision, not only high precision manufacturing technology but also reliable measurement technology is required. Machine vision systems have been used in the automatic inspection of screw threads based on backlight illumination, which cannot detect defects on the thread surface. Recently, an omnidirectional inspection system for screw threads was developed to obtain $360^{\circ}$ images of screws, based on front light illumination. In this study, the illumination design for the omnidirectional inspection system was modified by adding a light shield to improve the image uniformity. Optical simulation for various shield designs was performed to analyze image uniformity of the obtained images. The simulation results were analyzed statistically using response surface method, from which optical performance of the omnidirectional inspection system could be optimized in terms of image quality and uniformity.

THE ADVANTAGE OF ON ORBIT NON-UNIFORMITY CORRECTION FOR MULTI SPECTRAL CAMERA (MSC)

  • Chang Young-Jun;Kong Jong-Pil;Huh Haeng-Pal;Kim Young-Sun;Park Jong-Euk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.586-588
    • /
    • 2005
  • The MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. This system uses lossy image compression method for &Direct mission& that transmit whole image during one contact. But some image degradation occurred especially at high compression ratio. To reduce this degradation, the MSC uses NUC (Non-uniformity Correction) Unit. This unit correct CCD (Charge Coupled Device)'s high-frequency non-uniformity. So high frequency contents of image can be minimized and whole system SNR can be maximized. But NUC has some disadvantage either. It decreases entire system reliability by adding one electronic system. Adding NUC also led to difficulty of electronic design, assembly and testability. In this paper, the comparison is performed between on-orbit non-uniform correction and on ground correction. by evaluating NUC advantage for the point of view of image quality. Using real MSC parameter and proper model, considerable reference point for the system design came to possible.

  • PDF

The difference of image quality using other radioactive isotope in uniformity correction map of myocardial perfusion SPECT (심근 관류 SPECT에서 핵종에 따른 Uniformity correction map 설정을 통한 영상의 질 비교)

  • Song, Jae hyuk;Kim, Kyeong Sik;Lee, Dong Hoon;Kim, Sung Hwan;Park, Jang Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Purpose When the patients takes myocardial perfusion SPECT using $^{201}Tl$, the operator gives the patients an injection of $^{201}Tl$. But the uniformity correction map in SPECT uses $^{99m}Tc$ uniformity correction map. Thus, we want to compare the image quality when it uses $^{99m}Tc$ uniformity correction map and when it uses $^{201}Tl$ uniformity correction map. Materials and Methods Phantom study is performed. We take the data by Asan medical center daily QC condition with flood phantom including $^{201}Tl$ 21.3 kBq/mL. After postprocessing with this data, we analyze CFOV integral uniformity(I.U) and differential uniformity(D.U). And we take the data with Jaszczak ECT Phantom by American college of radiology accreditation program instruction including $^{201}Tl$ 33.4 kBq/mL. After post processing with this data, we analyze spatial Resolution, Integral Uniformity(I.U), coefficient of variation(C.V) and Contrast with Interactive data language program. Results In the flood phantom test, when it uses $^{99m}Tc$ uniformity correction map, Flood I.U is 3.6% and D.U is 3.0%. When it uses $^{201}Tl$ uniformity correction map, Flood I.U is 3.8% and D.U is 2.1%. The flood I.U is worsen about 5%, but the D.U is improved about 30% inversely. In the Jaszczak ECT phantom test, when it uses $^{99m}Tc$ uniformity correction map, SPECT I.U, C.V and contrast is 13.99%, 4.89% and 0.69. When it uses $^{201}Tl$ uniformity correction map, SPECT I.U, C.V and contrast is 11.37%, 4.79% and 0.78. All of data are improved about 18%, 2%, 13% The spatial resolution was no significant changes. Conclusion In the flood phantom test, Flood I.U is worsen but Flood D.U is improved. Therefore, it's uncertain that an image quality is improved with flood phantom test. On the other hand, SPECT I.U, C.V, Contrast are improved about 18%, 2%, 13% in the Jaszczak ECT phantom test. This study has limitations that we can't take all variables into account and study with two phantoms. We need think about things that it has a good effect when doctors decipher the nuclear medicine image and it's possible to improve the image quality using the uniformity correction map of other radionuclides other than $^{99m}Tc$, $^{201}Tl$ when we make other nuclear medicine examinations.

  • PDF

Phantom Image Evaluations Depending on the Quality Control-Uniformity of Brain Perfusion SPECT Scanner (뇌 관류 SPECT 스캐너의 정도관리-균일도에 따른 팬텀 영상 평가)

  • Jung-Soo, Kim;Hyun-Jin, Yang;Joon, Kim;Chan-Rok, Park
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • To have highly reliable diagnostic performance of it, this study comparatively analyzed spatial resolution of SPECT images and interrelationship depending on the changes of system uniformity of ga㎜a camera through phantom analysis. This study chose 6 kinds of results from quality control (uniformity) of triple head SPECT scanner operated in an university hospital in Seoul for six months. Then, study measured spatial resolutions (FWHM) of the images restructured by injecting radiopharmaceuticals to Jaszczak phantom, and doing SPECT scanning under the same conditions as clinical ones using the analytical program (image J). Quality controls performed by the experimental institution showed that differential uniformity of UFOV ranged from 2.76% to 7.61% (4.46±2.07), and integral uniformity of UFOV ranged from 1.98% to 5.42% (3.01±1.43). Meanwhile, Quantitative analysis evaluations of phantom images depending on the changes of uniformity of SPECT scanner detector showed that as the uniformity values of UFOV and CFOV decreased, FWHM values of phantom images decreased from 8.5 ㎜ to 5.8 ㎜. That is, it was quantitatively identified that the higher uniformity of detector is, the better spatial resolution of images gets (P<0.05). It is very important to perform continuous and consistent quality control of the nuclear medicinal system, and users should be clearly conscious of it.