• Title/Summary/Keyword: image technology

Search Result 9,453, Processing Time 0.045 seconds

Assessment of Effective Dose by using additional Filters in Dental Radiography: PC-Based Monte Carlo Program Analysis Subjected on Intraoral Radiography (치과 방사선 촬영의 부가 필터 사용에 따른 유효선량 평가: 구내 촬영에 대한 PC-Based Monte Carlo Program 분석)

  • Kwak, Jong Hyeok;Kim, A Yeon;Kim, Gyeong Rip;Cho, Hee Jung;Moon, Sung Jin;Kil, Sang Hyeong;Lee, Jong Kyu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.491-498
    • /
    • 2021
  • In this study, the effective dose was measured using the PCXMC v2.0 program by examining the conditions used to set the diagnostic reference level for intraoral imaging recommended by the government, and the effect of the Al additive filter was confirmed. In oral imaging, the largest effective dose was calculated from the oral mucosa among 11 organs. The effect of the Al additive filter showed an excellent radiation reduction effect at 2mm rather than 1mm. In the case of children aged 5 years, the overall effective dose was calculated to be high in all 11 organs because they are more sensitive to radiation than adults. And as a result of evaluating the image quality according to the use of an additional filter during intraoral imaging, there was no significant difference in SNR and CNR changes compared to before the additional filter was used. Based on this study, it is thought that additional filter settings can be recommended for intraoral imaging.

Quality characteristics of Jeung-pyun with different amount of Makgeolli (막걸리 첨가량을 달리한 증편의 품질 특성)

  • Kim, Jin-Seong;Choi, JinHee;Choi, Hae-Yeon
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.196-202
    • /
    • 2022
  • In this study, the quality characteristics of Jeung-pyun with different amounts of Makgeolli (50, 100, 150, and 200 mL) were investigated, and standardization of the Jeung-pyun production process is suggested. Higher Makgeolli contents resulted in an increase in Jeung-pyun qualities such as the b value, air cell size, springiness, and cohesiveness, whereas Jeung-pyun characteristics such as the L values, pH, number of air cells, hardness, and gumminess significantly decreased. The specific volume was highest following method M-150, and the expansion rate was lowest following method M-200. Altering the Makgeolli content did not significantly differ in moisture content and b values. In the sensory evaluation results, the M-150 method produced the highest-ranking results for all tested items (i.e., overall acceptability, appearance, flavor, taste, and texture). Therefore, this study suggests that Jueng-pyun produced with the M-150 mixing ratio has excellent quality and sensory characteristics. Furthermore, the results of this study can be used as preliminary data for the standardization of Jueng-pyun production.

Development of Transparent Cleansing Water with Salicylic Acid and Capryloyl Salicylic Acid (살리실릭애씨드 및 카프릴로일살리실릭애씨드가 적용된 투명 클렌징 워터의 개발)

  • Yeo, Hye Lim;Park, Injeong;Jung, So Young;Lee, So Min;Kim, Hyung mook;Lee, Mi-Gi;Kwak, Byeong-Mun;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.87-95
    • /
    • 2022
  • This study is about the development of transparent cleansing water with one of the beta-hydroxy acids (BHA), salicylic acid, and capryloyl salicylic acid, which is one of the lipo-hydroxy acids (LHA). Transparent appearance was stabilized by increasing the solubility of lipophilic salicylic acid and capryloyl salicylic acid in water using ethanol, polyol, and sodium hydroxide, and supplementing suspension and deposition using a double micelle structure of two types of PEG surfactants. Cleansing water applied with this technology was developed, and makeup removing ability and skin texture improvement ability were confirmed using an optical camera and an image analyzer. This solubilization technology is proposed as a new approach of LHA, which has been difficult to apply due to its low solubility in water, and is expected to help in the development of new chemical peeling products.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.

AI Art Creation Case Study for AI Film & Video Content (AI 영화영상콘텐츠를 위한 AI 예술창작 사례연구)

  • Jeon, Byoungwon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.85-95
    • /
    • 2021
  • Currently, we stand between computers as creative tools and computers as creators. A new genre of movies, which can be called a post-cinema situation, is emerging. This paper aims to diagnose the possibility of the emergence of AI cinema. To confirm the possibility of AI cinema, it was examined through a case study whether the creation of a story, narrative, image, and sound, which are necessary conditions for film creation, is possible by artificial intelligence. First, we checked the visual creation of AI painting algorithms Obvious, GAN, and CAN. Second, AI music has already entered the distribution stage in the market in cooperation with humans. Third, AI can already complete drama scripts, and automatic scenario creation programs using big data are also gaining popularity. That said, we confirmed that the filmmaking requirements could be met with AI algorithms. From the perspective of Manovich's 'AI Genre Convention', web documentaries and desktop documentaries, typical trends post-cinema, can be said to be representative genres that can be expected as AI cinemas. The conditions for AI, web documentaries and desktop documentaries to exist are the same. This article suggests a new path for the media of the 4th Industrial Revolution era through research on AI as a creator of post-cinema.

Exploration of the Development Direction of Virtual Exhibition Using 3D Architectural Space (3D 건축공간을 활용한 가상 전시의 발전 방향 탐색)

  • Kim, Jong Kouk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.979-986
    • /
    • 2022
  • In this study, the virtual exhibition using 3D architectural space was analyzed in terms of the viewer's experience. For this purpose, the analysis items of the virtual architectural space include whether the actual architectural space is reproduced, the introduction of surreal elements, the degree of freedom of movement and circulation, the level of photorealism of spatial expression, the level of reproduction of the exhibits and information provision method, and the interaction with other participants. Six virtual exhibition projects designed by a well-known architect were selected and analyzed. Three directions were found through the analysis. First, even when designing a virtual exhibition space with a high degree of freedom, there is a tendency to present a familiar architectural environment. Second, the current method of creating a virtual architectural space is that the method using a 360-degree rendering image and the method using a game engine coexist with pros and cons. Third, the interaction between participants in the virtual exhibition is implemented only by using a game engine. It is expected that the virtual space production environment using the game engine to be developed will become more advantageous in the future.

A Basic Study on the Reduction of Illuminated Reflection for improving the Safety of Self-driving at Night (야간 자율주행 안전성 향상을 위한 조명반사광 감소에 관한 기초연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.60-68
    • /
    • 2022
  • As AI-technology develops, interest in the safety of autonomous driving is increasing. Recently, autonomous vehicles have been increasing, but efforts to solve side effects have been sluggish. In particular, night autonomous vehicles have more problems. This is because the probability of accidents is higher in the night driving environment than in the day environment. There are more factors to consider for self-driving at night. Among these factors, reflection of light or reflected light of lighting may be a fundamental cause of night accidents. Therefore, this study proposes method to reduce accidents and improve safety by reducing reflected light generated by the headlights of opposite vehicles or various surrounding light that appear as an important problem in night autonomous vehicles. Therefore, first, in an image obtained by a sensor of a night autonomous vehicle, illumination reflected light is extracted using reflected light characteristic information, and a color of each pixel using a reflection coefficient is found to reduce a special area generated by geometric characteristics. In addition, we find a new area using only the brightness component of the specular area, define it as Illuminated Reflection Light (IRL), and finally present a method to reduce it. Although the illumination reflection light could not be completely reduce, generally satisfactory results could be obtained. Therefore, it is believed that the proposed study can reduce casualties by solving the problems of night autonomous driving and improving safety.

A Study on A Deep Learning Algorithm to Predict Printed Spot Colors (딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구)

  • Jun, Su Hyeon;Park, Jae Sang;Tae, Hyun Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization (BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구)

  • Hyun-Chul Joo;Ju-Hyeong Lee;Jong-Won Lim;Jae-Hee Lee;Leen-Seok Kang
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.145-155
    • /
    • 2023
  • Recently, with the widespread adoption of Building Information Modeling (BIM) technology in the construction industry, various object detection algorithms have been used to verify errors between 3D models and actual construction elements. Since the characteristics of objects vary depending on the type of construction facility, such as buildings, bridges, and tunnels, appropriate methods for object detection technology need to be employed. Additionally, for object detection, initial object images are required, and to obtain these, various methods, such as drones and smartphones, can be used for image acquisition. The study uses a 360° camera optimized for internal tunnel imaging to capture initial images of the tunnel structures of railway and road facilities. Various object detection methodologies including the YOLO, SSD, and R-CNN algorithms are applied to detect actual objects from the captured images. And the Faster R-CNN algorithm had a higher recognition rate and mAP value than the SSD and YOLO v5 algorithms, and the difference between the minimum and maximum values of the recognition rates was small, showing equal detection ability. Considering the increasing adoption of BIM in current railway and road construction projects, this research highlights the potential utilization of 360° cameras and object detection methodologies for tunnel facility sections, aiming to expand their application in maintenance.