• Title/Summary/Keyword: image similarity

Search Result 1,061, Processing Time 0.025 seconds

An Improved Histogram-Based Image Hash (Histogram에 기반한 Image Hash 개선)

  • Kim, So-Young;Kim, Hyoung-Joong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.531-534
    • /
    • 2008
  • Image Hash specifies as a descriptor that can be used to measure similarity in images. Among all image Hash methods, histogram based image Hash has robustness to common noise-like operation and various geometric except histogram _equalization. In this_paper an improved histogram based Image Hash that is using "Imadjust" filter I together is proposed. This paper has achieved a satisfactory performance level on histogram equalization as well as geometric deformation.

  • PDF

A Definition of Similarity Measuring Function using Beauty Evaluation Extraction Factor of the Consonant (자음의 미적 평가 추출 요소를 이용한 유사도 함수 정의)

  • Han, Kun-Hee;Back, Soon-Hwa;Baek, Seung-Ho;Jun, Byoung-Min
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.3
    • /
    • pp.229-236
    • /
    • 2000
  • This paper proposes on the Hanguel character CAI system using image processing. For this, firstly, the characters written by elementary school students or foreigners arc captured by CCD camera. Secondly, Recognition is accomplished by pre-processing, thinning and recognition processes. Thirdly, strokes are separated and beauty evaluation is done by matching feature value of the input image from the similarity measure function. In particular, this paper describe to define the similarity measuring function using extracted factor values after getting the beauty evaluation factor values of the consonant in the entire CAI system. Finally, the effectiveness of the proposed system is demonstrated by experiments.

  • PDF

Realtime Object Region Detection Robust to Vehicle Headlight (차량의 헤드라이트에 강인한 실시간 객체 영역 검출)

  • Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Color Similarity Definition Based on Quantized Color Histogram for Clothing Identification

  • Choi, Yoo-Joo;Moon, Nam-Mee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.396-399
    • /
    • 2009
  • In this paper, we present a method to define a color similarity between color images using Octree-based quantization and similar color integration. The proposed method defines major colors from each image using Octree-based quantization. Two color palettes to consist of major colors are compared based on Euclidean distance and similar color bins between palettes are matched. Multiple matched color bins are integrated and major colors are adjusted. Color histogram based on the color palette is constructed for each image and the difference between two histograms is computed by the weighted Euclidean distance between the matched color bins in consideration of the frequency of each bin. As an experiment to validate the usefulness, we discriminated the same clothing from CCD camera images based on the proposed color similarity analysis. We retrieved the same clothing images with the success rate of 88 % using only color analysis without texture analysis.

  • PDF

Effect of Orifice Length on Particle Distribution in Particle-laden Jet (입자 부상 제트에서 오리피스 길이가 입자 분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Paik, Kyong-Yup;Khil, Taeock;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • As a propellant of a high speed underwater vehicle, the hydro-reactive solid metal particles using seawater as a oxidizer maximizes its specific impulse when the solid metal particles and the seawater are uniformly mixed in the combustion chamber. The purpose of this study is to investigate the effects of injector geometry on the particle distribution of similarity point of view. For the purpose of this similarity of the mean velocity and particle number density along the radial direction was measured by Particle Image Velocimetry(PIV).

A Study on Extracting Car License Plate Numbers Using Image Segmentation Patterns

  • Jang, Eun-Gyeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.87-94
    • /
    • 2018
  • This paper proposes a method of detecting the license plates of vehicles. The proposed technology applicable to different formats of license plates detects the numbers by standardizing the images at edge points. Specifically, in accordance with the format of each license plate, the technology captures the image in the character segment, and compares it against the sample model to derive their similarity and identify the numbers. Characters with high similarities are used to form a group of candidates and to extract the final characters. Analyzing the experimental results found the similarity of the extracted characters exceeded 90%, whereas that of less identifiable numbers was markedly lower. Still, the accuracy of the extracted characters with the highest similarity was over 80%. The proposed technology is applicable to extracting the character patterns of certain formats in diverse and useful ways.

Investigation of the Super-resolution Algorithm for the Prediction of Periodontal Disease in Dental X-ray Radiography (치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘 적용 가능성 연구)

  • Kim, Han-Na
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.153-158
    • /
    • 2021
  • X-ray image analysis is a very important field to improve the early diagnosis rate and prediction accuracy of periodontal disease. Research on the development and application of artificial intelligence-based algorithms to improve the quality of such dental X-ray images is being widely conducted worldwide. Thus, the aim of this study was to design a super-resolution algorithm for predicting periodontal disease and to evaluate its applicability in dental X-ray images. The super-resolution algorithm was constructed based on the convolution layer and ReLU, and an image obtained by up-sampling a low-resolution image by 2 times was used as an input data. Also, 1,500 dental X-ray data used for deep learning training were used. Quantitative evaluation of images used root mean square error and structural similarity, which are factors that can measure similarity through comparison of two images. In addition, the recently developed no-reference based natural image quality evaluator and blind/referenceless image spatial quality evaluator were additionally analyzed. According to the results, we confirmed that the average similarity and no-reference-based evaluation values were improved by 1.86 and 2.14 times, respectively, compared to the existing bicubic-based upsampling method when the proposed method was used. In conclusion, the super-resolution algorithm for predicting periodontal disease proved useful in dental X-ray images, and it is expected to be highly applicable in various fields in the future.

Structural Similarity Index for Image Assessment Using Pixel Difference and Saturation Awareness (이미지 평가를 위한 픽셀 변화량과 포화 인지의 구조적 유사도 기법)

  • Jeong, Ji-Soo;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.847-858
    • /
    • 2014
  • Until now, a lot of image quality assessment techniques or tools for optimal human visual system(HVS)-awareness have been researched and SSIM(Structural SIMilarity) and its improved techniques are representative examples. However, they often cannot cope with various images and different distortion types robustly, and thus this can cause a large gap between their index values and HVS-awareness. In this paper, we conduct image quality assessment on SSIM and its variants intensively and analyze the causes of each component function's observed anomalies. Then, we propose a novel image quality assessment technique to compensate and improve such anomalies. Additionally, through extensive image assessment simulations, we show that the proposed technique can indicate HVS-awareness more robustly and consistently than SSIM and its variants for various images and different distortion types.

Implementation of Intelligent Medical Image Retrieval System HIPS (지능형 의료영상검색시스템 HIPS 구현)

  • Kim, Jong-Min;Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • This paper describes the construction of knowledge data retrieval management system based on medical image CT. The developed system is aimed to improve the efficiency of the hospital by reading the medical images using the intelligent retrieval technology and diagnosing the patient 's disease name. In this study, the medical image DICOM file of PACS is read, the image is processed, and feature values are extracted and stored in the database. We have implemented a system that retrieves similarity by comparing new CT images required for medical treatment with the feature values of other CTs stored in the database. After converting 100 CT dicom provided for academic research into JPEG files, Code Book Library was constructed using SIFT, CS-LBP and K-Mean Clustering algorithms. Through the database optimization, the similarity of the new CT image to the existing data is searched and the result is confirmed, so that it can be utilized for the diagnosis and diagnosis of the patient.

Reduced-Reference Quality Assessment for Compressed Videos Based on the Similarity Measure of Edge Projections (에지 투영의 유사도를 이용한 압축된 영상에 대한 Reduced-Reference 화질 평가)

  • Kim, Dong-O;Park, Rae-Hong;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.37-45
    • /
    • 2008
  • Quality assessment ai s to evaluate if a distorted image or video has a good quality by measuring the difference between the original and distorted images or videos. In this paper, to assess the visual qualify of a distorted image or video, visual features of the distorted image are compared with those of the original image instead of the direct comparison of the distorted image with the original image. We use edge projections from two images as features, where the edge projection can be easily obtained by projecting edge pixels in an edge map along vertical/horizontal direction. In this paper, edge projections are obtained by using vertical/horizontal directions of gradients as well as the magnitude of each gradient. Experimental results show the effectiveness of the proposed quality assessment through the comparison with conventional quality assessment algorithms such as structural similarity(SSIM), edge peak signal-to-noise ratio(EPSNR), and edge histogram descriptor(EHD) methods.