• Title/Summary/Keyword: image semantics

Search Result 40, Processing Time 0.027 seconds

A Survey on Image Emotion Recognition

  • Zhao, Guangzhe;Yang, Hanting;Tu, Bing;Zhang, Lei
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1138-1156
    • /
    • 2021
  • Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.

Image Content Modeling for Meaning-based Retrieval (의미 기반 검색을 위한 이미지 내용 모델링)

  • 나연묵
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color. shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.

Semantic Image Annotation and Retrieval in Mobile Environments (모바일 환경에서 의미 기반 이미지 어노테이션 및 검색)

  • No, Hyun-Deok;Seo, Kwang-won;Im, Dong-Hyuk
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1498-1504
    • /
    • 2016
  • The progress of mobile computing technology is bringing a large amount of multimedia contents such as image. Thus, we need an image retrieval system which searches semantically relevant image. In this paper, we propose a semantic image annotation and retrieval in mobile environments. Previous mobile-based annotation approaches cannot fully express the semantics of image due to the limitation of current form (i.e., keyword tagging). Our approach allows mobile devices to annotate the image automatically using the context-aware information such as temporal and spatial data. In addition, since we annotate the image using RDF(Resource Description Framework) model, we are able to query SPARQL for semantic image retrieval. Our system implemented in android environment shows that it can more fully represent the semantics of image and retrieve the images semantically comparing with other image annotation systems.

Extending Semantic Image Annotation using User- Defined Rules and Inference in Mobile Environments (모바일 환경에서 사용자 정의 규칙과 추론을 이용한 의미 기반 이미지 어노테이션의 확장)

  • Seo, Kwang-won;Im, Dong-Hyuk
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.158-165
    • /
    • 2018
  • Since a large amount of multimedia image has dramatically increased, it is important to search semantically relevant image. Thus, several semantic image annotation methods using RDF(Resource Description Framework) model in mobile environment are introduced. Earlier studies on annotating image semantically focused on both the image tag and the context-aware information such as temporal and spatial data. However, in order to fully express their semantics of image, we need more annotations which are described in RDF model. In this paper, we propose an annotation method inferencing with RDFS entailment rules and user defined rules. Our approach implemented in Moment system shows that it can more fully represent the semantics of image with more annotation triples.

An Efficient Chaotic Image Encryption Algorithm Based on Self-adaptive Model and Feedback Mechanism

  • Zhang, Xiao;Wang, Chengqi;Zheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1785-1801
    • /
    • 2017
  • In recent years, image encryption algorithms have been developed rapidly in order to ensure the security of image transmission. With the assistance of our previous work, this paper proposes a novel chaotic image encryption algorithm based on self-adaptive model and feedback mechanism to enhance the security and improve the efficiency. Different from other existing methods where the permutation is performed by the self-adaptive model, the initial values of iteration are generated in a novel way to make the distribution of initial values more uniform. Unlike the other schemes which is on the strength of the feedback mechanism in the stage of diffusion, the piecewise linear chaotic map is first introduced to produce the intermediate values for the sake of resisting the differential attack. The security and efficiency analysis has been performed. We measure our scheme through comprehensive simulations, considering key sensitivity, key space, encryption speed, and resistance to common attacks, especially differential attack.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.

Deep Hashing for Semi-supervised Content Based Image Retrieval

  • Bashir, Muhammad Khawar;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3790-3803
    • /
    • 2018
  • Content-based image retrieval is an approach used to query images based on their semantics. Semantic based retrieval has its application in all fields including medicine, space, computing etc. Semantically generated binary hash codes can improve content-based image retrieval. These semantic labels / binary hash codes can be generated from unlabeled data using convolutional autoencoders. Proposed approach uses semi-supervised deep hashing with semantic learning and binary code generation by minimizing the objective function. Convolutional autoencoders are basis to extract semantic features due to its property of image generation from low level semantic representations. These representations of images are more effective than simple feature extraction and can preserve better semantic information. Proposed activation and loss functions helped to minimize classification error and produce better hash codes. Most widely used datasets have been used for verification of this approach that outperforms the existing methods.

The Expression of Metaphor and Metonymy in Fashion illustration by Three Components of Visual Sign (시각기호의 3차원을 활용한 패션일러스트레이션의 은유와 환유적 표현방법 분석)

  • 최정화;유영선
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.3
    • /
    • pp.13-25
    • /
    • 2004
  • The purpose of this study was to show the analysis system and the expression which is applied to fashion illustration by three major components in visual sign, metaphor and metonymy. The results of this study were as follows : Firstly, metaphor in qualisign of syntactics was revealed as a color such as realistic description, a pattern such as clothing of figure. etc. Metonymy was revealed as a social and cultural background color, a concept pattern. etc. In sinsign of syntactics. metaphor was revealed as a human body, non-human body and metamorphosis human body and metonymy as a human body and non-human body. In legisign of syntactics, the metaphor by perspective was used for a fantasy of space. and the metonymy was revealed as a color perspective representation, etc. The degree of change of texture was revealed as a metaphor and metonymy of gradation. And conventional custom sign was almost revealed in metaphor. Secondly, semantics showed about fashion image as juxtaposition of two similar objects in metaphor and as real description and simplification in metonymy Alternative fashion image in semantics was presented as a object related to fashion image. Conventional symbolic sign was presented as a role to clarify a fashion message in metaphor. Thirdly, the metaphorical and metonymical expression in pragmatics were usually presented as drawing and painting.

Analysis of Meaning of Dress on Children`s Painting (兒童 에 표현된 ‘옷’에 대한 의미 분석 -초등학교 저학년 여자 어린이를 중심으로-)

  • 조진숙
    • The Research Journal of the Costume Culture
    • /
    • v.5 no.4
    • /
    • pp.44-53
    • /
    • 1997
  • The purpose of this study is to analyze dress meanings painted by elementary school girl. As in language, the dress is the symbol and form of non-verval communicator its wearer by means of the mentalistic semantics. Also it is to analyze meanings of dress by applying the semantics of Geoffrey Leech. The followings are the findings of the analysis 1. The conceptual are the findings of the analysis 2. The social meaning is indicating the feminine image. 3. The offective meaning is indicating the aesthetic value.

  • PDF

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.