• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.032 seconds

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.

Color-based Image Retrieval using Color Segmentation and Histogram Reconstruction

  • Kim, Hyun-Sool;Shin, Dae-Kyu;Kim, Taek-Soo;Chung, Tae-Yun;Park, Sang-Hui
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.1-6
    • /
    • 2002
  • In this study, we propose the new color-based image retrieval technique using the representative colors of images and their ratios to a total image size obtained through color segmentation in HSV color space. Color information of an image is described by reconstructing the color histogram of an image through Gaussian modelling to its representative colors and ratios. And the similarity between two images is measured by histogram intersection. The proposed method is compared with the existing methods by performing retrieval experiments for various 1280 trademark image database.

  • PDF

Tongue Image Segmentation Using CNN and Various Image Augmentation Techniques (콘볼루션 신경망(CNN)과 다양한 이미지 증강기법을 이용한 혀 영역 분할)

  • Ahn, Ilkoo;Bae, Kwang-Ho;Lee, Siwoo
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.201-210
    • /
    • 2021
  • In Korean medicine, tongue diagnosis is one of the important diagnostic methods for diagnosing abnormalities in the body. Representative features that are used in the tongue diagnosis include color, shape, texture, cracks, and tooth marks. When diagnosing a patient through these features, the diagnosis criteria may be different for each oriental medical doctor, and even the same person may have different diagnosis results depending on time and work environment. In order to overcome this problem, recent studies to automate and standardize tongue diagnosis using machine learning are continuing and the basic process of such a machine learning-based tongue diagnosis system is tongue segmentation. In this paper, image data is augmented based on the main tongue features, and backbones of various famous deep learning architecture models are used for automatic tongue segmentation. The experimental results show that the proposed augmentation technique improves the accuracy of tongue segmentation, and that automatic tongue segmentation can be performed with a high accuracy of 99.12%.

Post-processing Algorithm Based on Edge Information to Improve the Accuracy of Semantic Image Segmentation (의미론적 영상 분할의 정확도 향상을 위한 에지 정보 기반 후처리 방법)

  • Kim, Jung-Hwan;Kim, Seon-Hyeok;Kim, Joo-heui;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.23-32
    • /
    • 2021
  • Semantic image segmentation technology in the field of computer vision is a technology that classifies an image by dividing it into pixels. This technique is also rapidly improving performance using a machine learning method, and a high possibility of utilizing information in units of pixels is drawing attention. However, this technology has been raised from the early days until recently for 'lack of detailed segmentation' problem. Since this problem was caused by increasing the size of the label map, it was expected that the label map could be improved by using the edge map of the original image with detailed edge information. Therefore, in this paper, we propose a post-processing algorithm that maintains semantic image segmentation based on learning, but modifies the resulting label map based on the edge map of the original image. After applying the algorithm to the existing method, when comparing similar applications before and after, approximately 1.74% pixels and 1.35% IoU (Intersection of Union) were applied, and when analyzing the results, the precise targeting fine segmentation function was improved.

Image Segmentation Using Morphological Operation and Region Merging (형태학적 연산과 영역 융합을 이용한 영상 분할)

  • 강의성;이태형;고성제
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.156-169
    • /
    • 1997
  • This paper proposes an image segmentation technique using watershed algorithm followed by region merging method. A gradient image is obtained by applying multiscale gradient algorithm to the image simplified by morphological filters. Since the watershed algorithm produces the oversegmented image. it is necessary to merge small segmented regions as wel]' as region having similar characteristics. For region merging. we utilize the merging criteria based on both the mean value of the pixels of each region and the edge intensities between regions obtained by the contour following process. Experimental results show that the proposed method produces meaningful image segmentation results.

  • PDF

Iterative SAR Segmentation by Fuzzy Hit-or-Miss and Homogeneity Index

  • Intajag Sathit;Chitwong Sakreya;Tipsuwanporn Vittaya
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • Object-based segmentation is the first essential step for image processing applications. Recently, SAR (Synthetic Aperture Radar) segmentation techniques have been developed, however not enough to preserve the significant information contained in the small regions of the images. The proposed method is to partition an SAR image into homogeneous regions by using a fuzzy hit-or-miss operator with an inherent spatial transformation, which endows to preserve the small regions. In our algorithm, an iterative segmentation technique is formulated as a consequential process. Then, each time in iterating, hypothesis testing is used to evaluate the quality of the segmented regions with a homogeneity index. The segmentation algorithm is unsupervised and employed few parameters, most of which can be calculated from the input data. This comparative study indicates that the new iterative segmentation algorithm provides acceptable results as seen in the tested examples of satellite images.

  • PDF

Segmentation of Defective Regions based on Logical Discernment and Multiple Windows for Inspection of TFT-LCD Panels (TFT-LCD 패널 검사를 위한 지역적 분별에 기반한 결함 영역 분할 알고리즘)

  • Chung, Gun-Hee;Chung, Chang-Do;Yun, Byung-Ju;Lee, Joon-Jae;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.204-214
    • /
    • 2012
  • This paper proposes an image segmentation for a vision-based automated defect inspection system on surface image of TFT-LCD(Thin Film Transistor Liquid Crystal Display) panels. TFT-LCD images have non-uniform brightness, which is hard to finding defective regions. Although there are several methods or proposed algorithms, it is difficult to divide the defect with high reliability because of non-uniform properties in the image. Kamel and Zhao disclosed a method which based on logical stage algorithm for segmentation of graphics and character. This method is a one of the local segmentation method that has a advantage. It is that characters and graphics are well segmented in an image which has non-uniform property. As TFT-LCD panel image has a same property, so this paper proposes new algorithm to segment regions of defects based on Kamel and Zhao's algorithm. Our algorithm has an advantage that there are a few ghost objects around the defects. We had experiments to prove performance in real TFT-LCD panel images, and comparing with the FFT(Fast Fourier Transform) method which is used a bandpass filter.

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

An Automatic Road Sign Recognizer for an Intelligent Transport System

  • Miah, Md. Sipon;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.378-383
    • /
    • 2012
  • This paper presents the implementation of an automatic road sign recognizer for an intelligent transport system. In this system, lists of road signs are processed with actions such as line segmentation, single sign segmentation, and storing an artificial sign in the database. The process of taking the video stream and extracting the road sign and storing in the database is called the road sign recognition. This paper presents a study on recognizing traffic sign patterns using a segmentation technique for the efficiency and the speed of the system. The image is converted from one scale to another scale such as RGB to grayscale or grayscale to binary. The images are pre-processed with several image processing techniques, such as threshold techniques, Gaussian filters, Canny edge detection, and the contour technique.

An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm (개선된 다중 구간 샘플링 배경제거 알고리즘)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.