• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.029 seconds

Land Cover Classification of Multi-functional Administrative City for Hazard Mitigation Precaution (행정중심복합도시 재해경감대책을 위한 토지피복분류)

  • Han, Seung-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • In this study, land cover classification and NDVI evaluation for hazard mitigation precaution are carried out in surrounding areas of Yeongi-gun, Chungcheongnam-do ($132\;km^2$) where a project for multi-functional administrative city is promoted by government. Image acquired from KOMPSAT 2, LANDSAT and ASTER is utilized and comparative evaluation on limitation in classification based on resolution was carried out. The area mainly consists of arable land including mountains, rice fields, ordinary fields, etc thus special attention was paid to the classification of rice fields and ordinary fields. For the classification of image acquired from KOMPSAT 2, segmentation technique for classification of high-resolution image was applied. To evaluate the accuracy of the classification, field investigation was conducted to examine the sample and it was compared with the land usage and classification of land category in land ledger of Korea. Acquired results were made into theme map in shape file format and it would be of great help in decision making of policy for the future-oriented development plan of multi-functional administrative city.

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

Digital Particle Holographic System for Flow-Field Measurements (유동장 계측을 위한 디지털 입자 홀로그래피 시스템)

  • Yan, Yang;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.309-316
    • /
    • 2010
  • In this study, a digital particle holographic system and its application to channel-flow measurements were investigated. A double-exposure hologram recording system that is capable of recording digital holograms in a short time interval was developed. A correlation coefficient method was used to determine the focal plane of particles. The Wiener filter was used to remove noises and improve image quality. Two-threshold and image segmentation methods were used for binary image transformation. The cross-correlation method was used for particle pairing. The developed system was employed to study channel flow fields, and the axial velocities of channel flow were measured. The measurement errors are acceptable, and this proves the feasibility of using the digital particle holographic system as a good tool for flow-field measurements.

Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm (영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식)

  • Kim Kwang-Baek;Kim Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1153-1158
    • /
    • 2006
  • The classification of the background and cell areas is very important research area because of the ambiguous boundary. In this paper, the region of cell is extracted from an image of uterine cervical cytodiagnosis using the region growing method that increases the region of interest based on similarity between pixels. Segmented image from background and cell areas is binarized using a threshold value. And then 8-directional tracking algorithm for contour lines is applied to extract the cell area. First, the extracted nucleus is transformed to RGB color that is the original image. Second, the K-means clustering algorithm is employed to classify RGB pixels to the R, G, and B channels, respectively. Third, the Hue information of nucleus is extracted from the HSI models that is the transformation of the clustering values in R, G, and B channels. The backpropagation algorithm is employed to classify and identify the normal or abnormal nucleus.

Region Segmentation Algorithm of Object Using Self-Extraction of Reference Template (기준 템플릿의 자동 생성 기법을 이용한 물체 영역 분할 알고리즘)

  • Lee, Gyoon-Jung;Lee, Dong-Won;Joo, Jae-Heum;Bae, Jong-Gab;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • In this paper, we propose the technique detecting interest object region effectively in the images from periscope of submarine based on self-generated template. First, we extract the sea-sky line, and divide it into sky and sea area from background region based on the sea-sky line. In each divided background region, the blocks which can be represented in each background region are set as a reference template. After dividing an image into several same size of blocks, we apply multi template matching to the divided search blocks and histogram template to divide the image into object region and background region. Proposed algorithm is adapted to various images in which objects exist in the background of sea and sky. We verified that proposed algorithm performed properly without given informmed prby prior learning.ropso, regardless of the slope of sea-sky line and the locmed p of object based on sea-sky line, we verified that the objects region was segmented effectively from the input image.

Belief propagation stereo matching technique using 2D laser range finder (2차원 레이저 거리측정기를 활용한 신뢰도 전파 스테레오 정합 기법)

  • Kim, Jin-Hyung;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.132-142
    • /
    • 2014
  • Stereo camera is drawing attention as an essential sensor for future intelligence robot system since it has the advantage of acquiring not only distance but also other additive information for an object. However, it cannot match correlated point on target image for low textured region or periodic patterned region such as wall of building or room. In this paper, we propose a stereo matching technique that increase the matching performance by fusing belief propagation stereo matching algorithm and local distance measurements of 2D-laser range finder in order to overcome this kind of limitation. The proposed technique adds laser measurements by referring quad-tree based segment information on to the local-evidence of belief propagation stereo matching algorithm, and calculates compatibility function by reflecting over-segmented information. Experimental results of the proposed method using simulation and real test images show that the distance information for some low textured region can be acquired and the discontinuity of depth information is preserved by using segmentation information.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.

Urban Object Classification Using Object Subclass Classification Fusion and Normalized Difference Vegetation Index (객체 서브 클래스 분류 융합과 정규식생지수를 이용한 도심지역 객체 분류)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • A widely used method for monitoring land cover using high-resolution satellite images is to classify the images based on the colors of the objects of interest. In urban areas, not only major objects such as buildings and roads but also vegetation such as trees frequently appear in high-resolution satellite images. However, the colors of vegetation objects often resemble those of other objects such as buildings, roads, and shadows, making it difficult to accurately classify objects based solely on color information. In this study, we propose a method that can accurately classify not only objects with various colors such as buildings but also vegetation objects. The proposed method uses the normalized difference vegetation index (NDVI) image, which is useful for detecting vegetation objects, along with the RGB image and classifies objects into subclasses. The subclass classification results are fused, and the final classification result is generated by combining them with the image segmentation results. In experiments using Compact Advanced Satellite 500-1 imagery, the proposed method, which applies the NDVI and subclass classification together, showed an overall accuracy of 87.42%, while the overall accuracy of the subchannel classification technique without using the NDVI and the subclass classification technique alone were 73.18% and 81.79%, respectively.

Optimal Gator-filter Design for Multiple Texture Image Segmentation (다중 텍스쳐 영상 분할을 위한 최적 가버필터의 설계)

  • Lee, U-Beom;Kim, Uk-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.11-22
    • /
    • 2002
  • The design of optimal filter yielding optimal texture feature separation is a most effective technique in many torture analyzing areas, such as perception of surface, object, shape and depth. But, most optimal filter design approaches are restricted to the issue of computational complexity and supervised problems. In this paper, Our proposed method yields new insight into the design of optimal Gabor filters for segmenting multiple texture images. The optimal frequency of Gator filter is turned to the optimal frequency of the distinct texture in frequency domain. In order to show the performance of the designed filters, we have attempted to build a various texture images. Our experimental results show that the performance of the system is very successful.

Block Based Face Detection Scheme Using Face Color and Motion Information

  • Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.461-468
    • /
    • 2003
  • In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.