• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.025 seconds

3D Building Reconstruction Using a New Perceptual Grouping Technique

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract the useful building location information from the generated disparity map to obtain the segmentation of interested objects and thus reduce significantly unnecessary line segment extracted in low level feature extraction step. Hypothesis selection is carried out by using undirected graph in which close cycles represent complete rooftops hypotheses, and hypothesis are finally tested to contruct building model. We test the proposed method with synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the buildings can be efficiently used for the task of building detection and reconstruction from aerial images.

  • PDF

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.

Design of Moving Picture Retrieval System using Scene Change Technique (장면 전환 기법을 이용한 동영상 검색 시스템 설계)

  • Kim, Jang-Hui;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • Recently, it is important to process multimedia data efficiently. Especially, in case of retrieval of multimedia information, technique of user interface and retrieval technique are necessary. This paper proposes a new technique which detects cuts effectively in compressed image information by MPEG. A cut is a turning point of scenes. The cut-detection is the basic work and the first-step for video indexing and retrieval. Existing methods have a weak point that they detect wrong cuts according to change of a screen such as fast motion of an object, movement of a camera and a flash. Because they compare between previous frame and present frame. The proposed technique detects shots at first using DC(Direct Current) coefficient of DCT(Discrete Cosine Transform). The database is composed of these detected shots. Features are extracted by HMMD color model and edge histogram descriptor(EHD) among the MPEG-7 visual descriptors. And detections are performed in sequence by the proposed matching technique. Through this experiments, an improved video segmentation system is implemented that it performs more quickly and precisely than existing techniques have.

The rocognition of two-dimensional objects using the inverse histogram (인버스 히스토그램을 이용한 다수의 이차원 물체 인식)

  • 박성혁;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.331-336
    • /
    • 1986
  • Because the threshold technique using the histogram of intensity is the most attractive for segmentation in the sense of fast image processing, this paper defined the new function of inverse histogram of intensity and found out a threshold by means of it. The segmented errors are removed by regulating a scan size of blob coloring. Blob-coloring algorithm presented by [6] was reproved for good performance i.e., no change of feature in bolobs after blob coloring. The ratio of successful recognition was about 85 percents.

  • PDF

Natural Image Segmentation and Labeling Technique by Color-Spatial Histogram and Statistics (칼라-공간 히스토그램의 통계 정보를 이용한 자연 영상의 영역 분할 및 레이블링 기법)

  • 신수연;김우생
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.154-159
    • /
    • 2002
  • 영역 분할과 영역 레이블링은 내용에 기반한 영상 검색이나 영상 이해를 위해 선행되어야 하는 중요한 작업중의 하나이다. 본 논문에서는 칼라-공간 히스토그램의 통계정보를 통해 자연 영상내의 영역을 효율적으로 분할하고 또한 이러한 데이터를 생성규칙으로 만들어 레이블링 하는 새로운 방법을 제안한다. 제안하는 방법은 자연영상처럼 많지 않은 영역으로 이루어진 경우 매우 효율적임을 보였다.

  • PDF

X-ray Image Processing for the Korea Red Ginseng Inner Hole Detection ( I ) - Preprocessing technique for inner hole detection - (홍삼 내공검출을 위한 X-선 영상처리기술(I) - 내공검출에 적합한 전처리기법 -)

  • 손재룡;최규홍;이강진;최동수;김기영
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2002
  • Quality evaluation of red ginsengs is determined by outer shape and inner qualities. Especially, the inner qualities are main grading criteria. Currently, red ginsengs are classified into 3-grades; heaven, earth and good. The best heaven grade must not include inner holes and sponge tissues. This study was conducted to develop a red ginseng sorting system using x-ray image processing technique. Because of lens characteristic, gray values of the central region in the x-ray image are higher and gradually decreased towards the edge regions. This difference of gray values gives trouble in segmentation and detection of inner holes in red ginseng image, so preprocessing technique is necessary. The preprocessing was done by subtracting source image from an empty background image. But, simple subtraction was not quite appropriate because of too small contrast between inner holes and sound part. Scaled subtraction images were obtained by multiplying all gray values by some numbers. However this method could not help to set threshold value because the gray values of root part are generally lower than body part when red ginseng is exposed to the x-ray. To determine threshold value for detecting inner holes, an algorithm was developed by increasing overall gray values of less clear images.

A Study on the Implement of Image Recognition the Road Traffic Safety Information Board using Nearest Neighborhood Decision Making Algorithm (최근접 이웃 결정방법 알고리즘을 이용한 도로교통안전표지판 영상인식의 구현)

  • Jung Jin-Yong;Kim Dong-Hyun;Lee So-Haeng
    • Management & Information Systems Review
    • /
    • v.4
    • /
    • pp.257-284
    • /
    • 2000
  • According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.

  • PDF

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.