• 제목/요약/키워드: image segmentation technique

Search Result 350, Processing Time 0.024 seconds

Segmentation Performance Analysis of the Otsu Algorithm for Spent Nuclear Fuel Cladding Image According to Morphological Operations

  • Jee A Baik;Jun Won Choi;Jung Jin Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.301-311
    • /
    • 2024
  • Hydride analysis is required to assess the mechanical integrity of spent nuclear fuel cladding. Image segmentation, which is a hydride analysis method, is a technique that can analyze the orientation and distribution of hydrides in cladding images of spent nuclear fuels. However, the segmentation results varied according to the image preprocessing. Inaccurate segmentation results can make hydride difficult to analyze. This study aims to analyze the segmentation performance of the Otsu algorithm according to the morphological operations of cladding images. Morphological operations were applied to four different cladding images, and segmentation performance was quantitatively compared using a histogram, between-class variance, and radial hydride fraction. As a result, this study found that morphological operations can induce errors in cladding images and that appropriate combinations of morphological operations can maximize segmentation performance. This study emphasizes the importance of image preprocessing methods, suggesting that they can enhance the accuracy of hydride analysis. These findings are expected to contribute to the advancements in integrity assessment of spent nuclear fuel cladding.

AN EFFICIENT IMAGE SEGMENTATION TECHNIQUE TO IDENTIFY TARGET AREAS FROM LARGE-SIZED MONOCHROME IMAGES

  • Yoon Young-Geun;Lee Seok-Lyong;park Ho-Hyun;Chung Chin-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.571-574
    • /
    • 2005
  • In this paper, we propose an efficient image segmentation technique for large-sized monochrome images using a hybrid approach which combines threshold and region-based techniques. First, an image is partitioned into fixed-size blocks and for each block the representative intensity is determined by averaging pixel intensities within the block. Next, the neighborhood blocks that have similar characteristics with respect to a specific threshold are merged in order to form candidate regions. Finally, those candidate regions are refined to get final target object regions by merging regions considering the spatial locality and certain criteria. We have performed experiments on images selected from various domains and showed that our technique was able to extract target object regions appropriately from most images.

  • PDF

Quality Inspection of Dented Capsule using Curve Fitting-based Image Segmentation

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.125-130
    • /
    • 2016
  • Automatic quality inspection by computer vision can be applied and give a solution to the pharmaceutical industry field. Pharmaceutical capsule can be easily affected by flaws like dents, cracks, holes, etc. In order to solve the quality inspection problem, it is required computationally efficient image processing technique like thresholding, boundary edge detection and segmentation and some automated systems are available but they are very expensive to use. In this paper, we have developed a dented capsule image processing technique using edge-based image segmentation, TLS(Total Least Squares) curve fitting technique and adopted low cost camera module for capsule image capturing. We have tested and evaluated the accuracy, training and testing time of the classification recognition algorithms like PCA(Principal Component Analysis), ICA(Independent Component Analysis) and SVM(Support Vector Machine) to show the performance. With the result, PCA, ICA has low accuracy, but SVM has good accuracy to use for classifying the dented capsule.

Color Image Segmentation by statistical approach (확률적 방법을 통한 컬러 영상 분할)

  • Gang Seon-Do;Yu Heon-U;Jang Dong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1677-1683
    • /
    • 2006
  • Color image segmentation is useful for fast retrieval in large image database. For that purpose, new image segmentation technique based on the probability of pixel distribution in the image is proposed. Color image is first divided into R, G, and B channel images. Then, pixel distribution from each of channel image is extracted to select to which it is similar among the well known probabilistic distribution function-Weibull, Exponential, Beta, Gamma, Normal, and Uniform. We use sum of least square error to measure of the quality how well an image is fitted to distribution. That P.d.f has minimum score in relation to sum of square error is chosen. Next, each image is quantized into 4 gray levels by applying thresholds to the c.d.f of the selected distribution of each channel. Finally, three quantized images are combined into one color image to obtain final segmentation result. To show the validity of the proposed method, experiments on some images are performed.

  • PDF

Texture segmentation using Neural Networks and multi-scale Bayesian image segmentation technique (신경회로망과 다중스케일 Bayesian 영상 분할 기법을 이용한 결 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.39-48
    • /
    • 2005
  • This paper proposes novel texture segmentation method using Bayesian estimation method and neural networks. We use multi-scale wavelet coefficients and the context information of neighboring wavelets coefficients as the input of networks. The output of neural networks is modeled as a posterior probability. The context information is obtained by HMT(Hidden Markov Tree) model. This proposed segmentation method shows better performance than ML(Maximum Likelihood) segmentation using HMT model. And post-processed texture segmentation results as using multi-scale Bayesian image segmentation technique called HMTseg in each segmentation by HMT and the proposed method also show that the proposed method is superior to the method using HMT.

A segmentation technique of moving target image using the optical BPEJTC system (광 BPEJTC 시스템을 이용한 이동표적 영상의 영역화 기법)

  • 이상이;이승현;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.65-74
    • /
    • 1995
  • In this paper, we propose a new technique to segment the moving target image from the natural background. This system as based on the optical BPEJTC for both detecting the moving target and automatically extracting the target image from the background by gradually eliminating the background image through the repeated correlation processes. Some computer simulation and experimental results show that the proposed system can effectively segment the moving car image from the fixed background, and that this system can be used for a fast moving target segmentation system.

  • PDF

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

K-Means Algorithm Using Texture Directionality for Natural Image Segmentation

  • Kasao, Atsushi;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.23-28
    • /
    • 1998
  • The goal of this research is to describe relations between impressions and elements in an image (i.e. color, texture and contours). Adequate image segmentation technique to extract these elements is required. We think that a sketch and a realistic painting are examples of optimal segmented images for our purpose because brush strokes are seem to be segmented areas and realistic paintings should remain the same impression as the model. For the reason, in this paper the segmentation technique which can create realistic painting-like segmentation is exploited. It is shown that the realistic painting-like segmentation is suitable for analyzing images.

  • PDF

Adaptive Image Segmentation Based on Histogram Transition Zone Analysis

  • Acuna, Rafael Guillermo Gonzalez;Mery, Domingo;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • While segmenting "complex" images (with multiple objects, many details, etc.) we experienced a need to explore new ways for time-efficient and meaningful image segmentation. In this paper we propose a new technique for image segmentation which has only one variable for controlling the expected number of segments. The algorithm focuses on the treatment of pixels in transition zones between various label distributions. Results of the proposed algorithm (e.g. on the Berkeley image segmentation dataset) are comparable to those of GMM or HMM-EM segmentation, but are achieved with significantly reduced computation time.

Inversion of Spread-Direction and Alternate Neighborhood System for Cellular Automata-Based Image Segmentation Framework

  • Lee, Kyungjae;Lee, Junhyeop;Hwang, Sangwon;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.21-23
    • /
    • 2017
  • Purpose In this paper, we proposed alternate neighborhood system and reverse spread-direction approach for accurate and fast cellular automata-based image segmentation method. Materials and Methods On the basis of a simple but effective interactive image segmentation technique based on a cellular automaton, we propose an efficient algorithm by using Moore and designed neighborhood system alternately and reversing the direction of the reference pixels for spreading out to the surrounding pixels. Results In our experiments, the GrabCut database were used for evaluation. According to our experimental results, the proposed method allows cellular automata-based image segmentation method to faster while maintaining the segmentation quality. Conclusion Our results proved that proposed method improved accuracy and reduced computation time, and also could be applied to a large range of applications.