• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.026 seconds

A High Image Compression for Computer Storage and Communication

  • Jang, Jong-Whan
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.191-220
    • /
    • 1991
  • A new texture segmentation-based image coding technique which performs segmentation based on roughness of textural regions and properties of the human visual system (HVS) is presented. This method solves the problems of a segmentation-based image coding technique with constant segments by proposing a methodology for segmenting an image texturally homogeneous regions with respect to the degree of roughness as perceived by the HVS. The fractal dimension is used to measure the roughness of the textural regions. The segmentation is accomplished by thresholding the fractal dimension so that textural regions are classified into three texture classes; perceived constant intensity, smooth texture, and rough texture. An image coding system with high compression and good image quality is achieved by developing an efficient coding technique for each segment boundary and each texture class. For the boundaries, a binary image representing all the boundaries is created. For regions belonging to perceived constant intensity, only the mean intensity values need to be transmitted. The smooth and rough texture regions are modeled first using polynomial functions, so only the coefficients characterizing the polynomial functions need to be transmitted. The bounda-ries, the means and the polynomial functions are then each encoded using an errorless coding scheme. Good quality reconstructed images are obtained with about 0.08 to 0.3 bit per pixel for three different types of imagery ; a head and shoulder image with little texture variation, a complex image with many edges, and a natural outdoor image with highly textured areas.

  • PDF

Document Layout Analysis Using Coarse/Fine Strategy (Coarse/fine 전략을 이용한 문서 구조 분석)

  • 박동열;곽희규;김수형
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.198-201
    • /
    • 2000
  • We propose a method for analyzing the document structure. This method consists of two processes, segmentation and classification. The segmentation first divides a low resolution image, and then finely splits the original document image using projection profiles. The classification deterimines each segmented region as text, line, table or image. An experiment with 238 documents images shows that the segmentation accuracy is 99.1% and the classification accuracy is 97.3%.

  • PDF

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

A Study on the Preprocessing Method Using Construction of Watershed for Character Image segmentation

  • Nam Sang Yep;Choi Young Kyoo;Kwon Yun Jung;Lee Sung Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.814-818
    • /
    • 2004
  • Off-line handwritten character recognition is in difficulty of incomplete preprocessing because it has not dynamic and timing information besides has various handwriting, extreme overlap of the consonant and vowel and many error image of stroke. Consequently off-line handwritten character recognition needs to study about preprocessing of various methods such as binarization and thinning. This paper considers running time of watershed algorithm and the quality of resulting image as preprocessing For off-line handwritten Korean character recognition. So it proposes application of effective watershed algorithm for segmentation of character region and background region in gray level character image and segmentation function for binarization image and segmentation function for binarization by extracted watershed image. Besides it proposes thinning methods which effectively extracts skeleton through conditional test mask considering running time and quality. of skeleton, estimates efficiency of existing methods and this paper's methods as running time and quality. Watershed image conversion uses prewitt operator for gradient image conversion, extracts local minima considering 8-neighborhood pixel. And methods by using difference of mean value is used in region merging step, Converted watershed image by means of this methods separates effectively character region and background region applying to segmentation function. Average execution time on the previous method was 2.16 second and on this paper method was 1.72 second. We prove that this paper's method removed noise effectively with overlap stroke as compared with the previous method.

  • PDF

3-D Laser Measurement using Mode Image Segmentation Method

  • Moon Hak-Yong;Park Jong-Chan;Han Wun-Dong;Cho Heung-Gi;Jeon Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.104-108
    • /
    • 2001
  • In this paper, the 3-D measurement method of moving object with a laser and one camera system for image processing method is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. In this paper, to improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.

  • PDF

Sequential Defect Region Segmentation according to Defect Possibility in TFT-LCD Image (TFT-LCD영상에서 결함 가능성에 따른 순차적 결함영역 분할)

  • Chang, Chung Hwan;Lee, SeungMin;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.633-640
    • /
    • 2020
  • Defect region segmentation of TFT-LCD images is performed by combining defect pixels detected by a defect detection method into defect region, or by using morphological operations to segment defect region. Therefore, the result of segmentation of the defect region is highly dependent on the defect detection result. In this paper, we propose a method which segments defect regions sequentially according to the possibility of being included in defect regions in TFT-LCD images. The proposed method repeats the process of detecting a seed using the median value and the median absolute deviation of the image, and segments the defect region using the seeded region growing method. We confirmed the superiority of the proposed method to segment defect regions using pseudo-images and real TFT-LCD images.

Edge Preserving using HOG Guide Filter for Image Segmentation (영상 분할을 위한 HOG 가이드 필터를 적용한 엣지 보존 기술)

  • OH, Young-Jin;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1164-1171
    • /
    • 2015
  • The edge preserving method is important for image storage and geometric transformation. In this paper, we propose a new edge preserving method using HOG-Guide filter for image segmentation. In our approach, we extract edge information using gradient histogram to set HOG guide line. Then, we use HOG guide line to smooth image. With two to four iterations of smoothing operations, we finally obtain desirable edge preserved image. Our experimental results showed good performances showing that our proposed method is better than other methods.

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

Unsupervised Multispectral Image Segmentation Based on 1D Combined Neighborhood Differences (1D 통합된 근접차이에 기반한 자율적인 다중분광 영상 분할)

  • Saipullah, Khairul Muzzammil;Yun, Byung-Choon;Kim, Deok-Hwan
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.625-628
    • /
    • 2010
  • This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.