• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.021 seconds

A Multi-Layer Perceptron for Color Index based Vegetation Segmentation (색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망)

  • Lee, Moon-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

A Multiresolution Image Segmentation Method using Stabilized Inverse Diffusion Equation (안정화된 역 확산 방정식을 사용한 다중해상도 영상 분할 기법)

  • Lee Woong-Hee;Kim Tae-Hee;Jeong Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • Image segmentation is the task which partitions the image into meaningful regions and considered to be one of the most important steps in computer vision and image processing. Image segmentation is also widely used in object-based video compression such as MPEG-4 to extract out the object regions from the given frame. Watershed algorithm is frequently used to obtain the more accurate region boundaries. But, it is well known that the watershed algorithm is extremely sensitive to gradient noise and usually results in oversegmentation. To solve such a problem, we propose an image segmentation method which is robust to noise by using stabilized inverse diffusion equation (SIDE) and is more efficient in segmentation by employing multiresolution approach. In this paper, we apply both the region projection method using labels of adjacent regions and the region merging method based on region adjacency graph (RAG). Experimental results on noisy image show that the oversegmenation is reduced and segmentation efficiency is increased.

Color Image Segmentation by statistical approach (확률적 방법을 통한 컬러 영상 분할)

  • Gang Seon-Do;Yu Heon-U;Jang Dong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1677-1683
    • /
    • 2006
  • Color image segmentation is useful for fast retrieval in large image database. For that purpose, new image segmentation technique based on the probability of pixel distribution in the image is proposed. Color image is first divided into R, G, and B channel images. Then, pixel distribution from each of channel image is extracted to select to which it is similar among the well known probabilistic distribution function-Weibull, Exponential, Beta, Gamma, Normal, and Uniform. We use sum of least square error to measure of the quality how well an image is fitted to distribution. That P.d.f has minimum score in relation to sum of square error is chosen. Next, each image is quantized into 4 gray levels by applying thresholds to the c.d.f of the selected distribution of each channel. Finally, three quantized images are combined into one color image to obtain final segmentation result. To show the validity of the proposed method, experiments on some images are performed.

  • PDF

Unsupervised Segmentation of Images Based on Shuffled Frog-Leaping Algorithm

  • Tehami, Amel;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.370-384
    • /
    • 2017
  • The image segmentation is the most important operation in an image processing system. It is located at the joint between the processing and analysis of the images. Unsupervised segmentation aims to automatically separate the image into natural clusters. However, because of its complexity several methods have been proposed, specifically methods of optimization. In our work we are interested to the technique SFLA (Shuffled Frog-Leaping Algorithm). It's a memetic meta-heuristic algorithm that is based on frog populations in nature searching for food. This paper proposes a new approach of unsupervised image segmentation based on SFLA method. It is implemented and applied to different types of images. To validate the performances of our approach, we performed experiments which were compared to the method of K-means.

Fast hierarchical image segmentation based on mathematical morphology (수리형태론에 기반한 고속 계층적 영상분할)

  • 김해룡;홍원학;김남철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.38-49
    • /
    • 1996
  • In this paper, we propose a fast hierarchical image segmentation using mathematical morphology. The proposed segmentation method is composed of five basic steps; multi-thresholding, open-close by reconstructing, mode operation, marker extraction, and region decision. In the multi-thresholding, an input image is simplified by Lloyd clustering algorithm. The multi-thresholded image then is more simplified by open-close by reconstruction and mode operating. In the region decision, to which region each uncertainty pixel belongs finally is decided by a watershed algorithm. Experimental results show that the quality of the segmentation results by the proposed method is not inferior to that by the conventional method and the average times elapsed by the proposed method can be reduced by one tghird of those elapsed by the conventional method.

  • PDF

Color Segmentation of Vehicle License Plates in the RGB Color Space Using Color Component Binarization (RGB 색상 공간에서 색상 성분 이진화를 이용한차량 번호판 색상 분할)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.49-54
    • /
    • 2014
  • This paper proposes a new color segmentation method of vehicle license plates in the RGB color space. Firstly, the proposed method shifts the histogram of an input image rightwards and then stretches the image of the histogram slide. Secondly, the method separates each of the three RGB color components and performs the adaptive threshold processing with the three components, respectively. Finally, it combines the three components under the condition of making up a segment color and removes noises with the morphological processing. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using real vehicle images. The results show that the proposed algorithm is successful for most vehicle images. However, the method fails in some vehicles when the body and the license plate have the same color.

Image Segmentation Using Level Set Method with New Speed Function (새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.335-345
    • /
    • 2011
  • In this paper, we propose a new hybrid speed function for image segmentation using level set. A new proposed speed function uses the region and boundary information of image object for the exact result of segmentation. The region information is defined by the probability information of pixel intensity in a ROI(region-of-interest), and the boundary information is defined by the gradient vector flow obtained from the gradient of image. We show the results of experiment for an various artificial image and real medical image to verify the accuracy of segmentation using proposed method.

Topological Analysis of the Feasibility and Initial-value Assignment of Image Segmentation (영상 분할의 가능성 및 초기값 배정에 대한 위상적 분석)

  • Doh, Sang Yoon;Kim, Jungguk
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.812-819
    • /
    • 2016
  • This paper introduces and analyzes the theoretical basis and method of the conventional initial-value assignment problem and feasibility of image segmentation. The paper presents topological evidence and a method of appropriate initial-value assignment based on topology theory. Subsequently, the paper shows minimum conditions for feasibility of image segmentation based on separation axiom theory of topology and a validation method of effectiveness for image modeling. As a summary, this paper shows image segmentation with its mathematical validity based on topological analysis rather than statistical analysis. Finally, the paper applies the theory and methods to conventional Gaussian random field model and examines effectiveness of GRF modeling.

Character Segmentation in a Grayscale Image using the Standard Deviation (그레이스케일 영상에서 표준 편차를 이용한 문자 분할)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.27-31
    • /
    • 2012
  • This paper proposes a new method of character segmentation in a grayscale image using the standard deviation. Firstly, the proposed method scans vertically the region of interest in an image in order to calculate a standard deviation for each scan line. Characters' standard deviations are much bigger than the background's. Therefore, it is possible to segment characters vertically using the differentiation of those two types of standard deviations. Secondly, the method scans each vertically segmented image horizontally at this time, and then segments each image similarly. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using credit card images. The results show that the proposed algorithm is quite successful for most credit cards. However, the method fails in some credit cards with strong background patterns.

Object-Based Image Search Using Color and Texture Homogeneous Regions (유사한 색상과 질감영역을 이용한 객체기반 영상검색)

  • 유헌우;장동식;서광규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • Object-based image retrieval method is addressed. A new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and texture features are extracted from each pixel in the image. These features we used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terns of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In retrieval case, two comparing schemes are proposed. Comparing between one query object and multi objects of a database image and comparing between multi query objects and multi objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into database.