• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.025 seconds

Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model (계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

SEGMENTATION WITH SHAPE PRIOR USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • Terbish, Dultuya;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.225-244
    • /
    • 2014
  • In this work, we discuss segmentation algorithms based on the level set method that incorporates shape prior knowledge. Fundamental segmentation models fail to segment desirable objects from a background when the objects are occluded by others or missing parts of their whole. To overcome these difficulties, we incorporate shape prior knowledge into a new segmentation energy that, uses global and local image information to construct the energy functional. This method improves upon other methods found in the literature and segments images with intensity inhomogeneity, even when images have missing or misleading information due to occlusions, noise, or low-contrast. We consider the case when the shape prior is placed exactly at the locations of the desired objects and the case when the shape prior is placed at arbitrary locations. We test our methods on various images and compare them to other existing methods. Experimental results show that our methods are not only accurate and computationally efficient, but faster than existing methods as well.

PROPAGATION OF MULTI-LEVEL CUES WITH ADAPTIVE CONFIDENCE FOR BILAYER SEGMENTATION OF CONSISTENT SCENE IMAGES

  • Lee, Soo-Chahn;Yun, Il-Dong;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.148-153
    • /
    • 2009
  • Few methods have dealt with segmenting multiple images with analogous content. Concurrent images of a scene and gathered images of a similar foreground are examples of these images, which we term consistent scene images. In this paper, we present a method to segment these images based on manual segmentation of one image, by iteratively propagating information via multi-level cues with adaptive confidence. The cues are classified as low-, mid-, and high- levels based on whether they pertain to pixels, patches, and shapes. Propagated cues are used to compute potentials in an MRF framework, and segmentation is done by energy minimization. Through this process, the proposed method attempts to maximize the amount of extracted information and maximize the consistency of segmentation. We demonstrate the effectiveness of the proposed method on several sets of consistent scene images and provide a comparison with results based only on mid-level cues [1].

  • PDF

An Enhancement of Image Segmentation Using Modified Watershed Algorithm

  • Kwon, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose a watershed algorithm that applies a high-frequency enhancement filter to emphasize the boundary and a local adaptive threshold to search for minimum points. The previous method causes the problem of over-segmentation, and over- segmentation appears around the boundary of the object, creating an inaccurate boundary of the region. The proposed method applies a high-frequency enhancement filter that emphasizes the high-frequency region while preserving the low-frequency region, and performs a minimum point search to consider local characteristics. When merging regions, a fixed threshold is applied. As a result of the experiment, the proposed method reduced the number of segmented regions by about 58% while preserving the boundaries of the regions compared to when high frequency emphasis filters were not used.

Color Image Segmentation using Hierarchical Histogram (계층적 히스토그램을 이용한 컬러영상분할)

  • 김소정;정경훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1771-1774
    • /
    • 2003
  • Image segmentation is very important technique as preprocessing. It is used for various applications such as object recognition, computer vision, object based image compression. In this paper, a method which segments the multidimensional image using a hierarchical histogram approach, is proposed. The hierarchical histogram approach is a method that decomposes the multi-dimensional situation into multi levels of 1 dimensional situations. It has the advantage of the rapid and easy calculation of the histogram, and at the same time because the histogram is applied at each level and not as a whole, it is possible to have more detailed partitioning of the situation.

  • PDF

High-Speed Character Segmentation from Low-Quality Binary Letter Image (저품질 이진 우편 영상에서의 고속 문자 분할)

  • 김두식;남윤석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.145-148
    • /
    • 2000
  • This paper proposes a character segmentation method for Korean letter address image. The poor quality of image binarization results in broken character strokes. To overcome this problem, two steps of processing ate introduced. The first one is to merge broken characters to generate character candidates, and the other one is to reduce the complexity of segmentation graph path. These two steps do not use recognition information to keep in high-speed.

  • PDF

A Parallel Algorithm for Image Segmentation on Mesh-connected MIMD System

  • Jeon, Byeong-Moon;Jeong, Chang-Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.3 no.1
    • /
    • pp.258-268
    • /
    • 1998
  • This paper presents two sequential advanced split and merge algorithms and a parallel image segmentation algorithm based on them. First, the two advanced methods are obtained from the combination of edge detection and classic split and merge to solve the inherent problems of the classical method. Besides, the parallel image segmentation algorithm on mesh-connected MIMD system considers three types in the merge stage to reduce the communication overhead between processors, such as intraprocessor merge, interprocessor with boundary merge, and interprocessor without boundary merge. Finally , we prove that the proposed algorithms achieve the improved performance by implementing them.

Moving Object Segmentation Using Spatio-Temporal Information (시공간 정보를 이용한 움직이는 물체의 분할)

  • 장재식;김종배;이창우;김항준
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.217-220
    • /
    • 2001
  • In this paper, we propose a segmentation method of moving object using the spatio-temporal information in image sequences. Proposed method consists of motion detection step using difference image, region segmentation step using k-means algorithm, motion estimation step and segmenting step using intensity and motion information. Experimental results show that the method is capable of segmenting variously moving objects in image sequences.

  • PDF

Segmentation of Range Images Using Hierachical Structure of Neural Networks (계층적 구조의 신경회로망을 이용한 거리영상의 분할)

  • 정인갑;현기호;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.123-129
    • /
    • 1994
  • The segmentation of range image is essential to recognize the three dimensional object. Generally, surface curvature is well-known feature for segmentation and classification of the fange image, but it is sensitive to noies. In this paper, we propose the structure of hierarchical neural network using surface curvature for segmentation of range images. The hierarchical structure of neural networks is robust to noise and the result of segmentaion is better than conventional optimization method of single level.

  • PDF

Automatic Left Ventricle Segmentation using Split Energy Function including Orientation Term from CTA

  • Kang, Ho Chul
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose an automatic left ventricle segmentation method in computed tomography angiography (CTA) using separating energy function. First, we smooth the images by applying anisotropic diffusion filter to remove noise. Secondly, the volume of interest (VOI) is detected by using k-means clustering. Thirdly, we divide the left and right heart with split energy function. Finally, we extract only left ventricle from left and right heart with optimizing cost function including orientation term.