• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.023 seconds

USER BASED IMAGE SEGMENTATION FOR APPLICATION TO SATELLITE IMAGE

  • Im, Hyuk-Soon;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.126-129
    • /
    • 2008
  • In this paper, we proposed a method extracting an object from background of the satellite image. The image segmentation techniques have been widely studied for the technology to segment image and to synthesis segment object with other images. Proposed algorithm is to perform the edge detection of a selected object using genetic algorithm. We segment region of object based on detection edge using watershed algorithm. We separated background and object in indefinite region using gradual region merge from segment object. And, we make GUI for the application of the proposed algorithm to various tests. To demonstrate the effectiveness of the proposed method, several analysis on the satellite images are performed.

  • PDF

An Efficient Data Augmentation for 3D Medical Image Segmentation (3차원 의료 영상의 영역 분할을 위한 효율적인 데이터 보강 방법)

  • Park, Sangkun
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Deep learning based methods achieve state-of-the-art accuracy, however, they typically rely on supervised training with large labeled datasets. It is known in many medical applications that labeling medical images requires significant expertise and much time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. This paper proposes a 3D image augmentation method to overcome these difficulties. It allows us to enrich diversity of training data samples that is essential in medical image segmentation tasks, thus reducing the data overfitting problem caused by the fact the scale of medical image dataset is typically smaller. Our numerical experiments demonstrate that the proposed approach provides significant improvements over state-of-the-art methods for 3D medical image segmentation.

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

Color Image Segmentation for Content-based Image Retrieval (내용기반 영상검색을 위한 칼라 영상 분할)

  • Lee, Sang-Hun;Hong, Choong-Seon;Kwak, Yoon-Sik;Lee, Dai-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.2994-3001
    • /
    • 2000
  • In this paper. a method for color image segmentation using region merging is proposed. A inhomogeneity which exists in image is reduced by smoothing with non-linear filtering. saturation enhancement and intensity averaging in previous step of image segmentation. and a similar regions are segmented by non-uniform quantization using zero-crossing information of color histogram. A edge strength of initial region is measured using high frequency energy of wavelet transform. A candidate region which is merged in next step is selected by doing this process. A similarity measure for region merging is processed using Euclidean distance of R. G. B color channels. A Proposed method can reduce an over-segmentation results by irregular light sources et. al, and we illustrated that the proposed method is reasonable by simulation.

  • PDF

Region Merging Method Preserving Object Boundary for Color Image Segmentation (칼라 영상 분할을 위한 경계선 보존 영역 병합 방법)

  • 유창연;곽내정;김영길;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.319-326
    • /
    • 2004
  • In this paper, we propose color image segmentation by region merging method preserving the boundary of an object. The proposed method selects initial region by using quantized image's index map after vector quantizing an original image. After then, we merge regions by applying boundary restricted factor in order to consider the boundary of an object in HSI color space. Also we merge the regions in RGB color space for non-processed regions in HSI color space. And we reduce processing time by decreasing iterative process in region merging algorithm. Experimental results have demonstrated the superiority in region's segmentation results and processing time for various images.

  • PDF

Improved Tooth Detection Method for using Morphological Characteristic (형태학적 특징을 이용한 향상된 치아 검출 방법)

  • Na, Sung Dae;Lee, Gihyoun;Lee, Jyung Hyun;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1171-1181
    • /
    • 2014
  • In this paper, we propose improved methods which are image conversion and extraction method of watershed seed using morphological characteristic of teeth on complement image. Conventional tooth segmentation methods are occurred low detection ratio at molar region and over, overlap segmentation owing to specular reflection and morphological feature of molars. Therefore, in order to solve the problems of the conventional methods, we propose the image conversion method and improved extraction method of watershed seed. First, the image conversion method is performed using RGB, HSI space of tooth image for to extract boundary and seed of watershed efficiently. Second, watershed seed is reconstructed using morphological characteristic of teeth. Last, individual tooth segmentation is performed using proposed seed of watershed by watershed algorithm. Therefore, as a result of comparison with marker controlled watershed algorithm and the proposed method, we confirmed higher detection ratio and accuracy than marker controlled watershed algorithm.

An improved fuzzy c-means method based on multivariate skew-normal distribution for brain MR image segmentation

  • Guiyuan Zhu;Shengyang Liao;Tianming Zhan;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2082-2102
    • /
    • 2024
  • Accurate segmentation of magnetic resonance (MR) images is crucial for providing doctors with effective quantitative information for diagnosis. However, the presence of weak boundaries, intensity inhomogeneity, and noise in the images poses challenges for segmentation models to achieve optimal results. While deep learning models can offer relatively accurate results, the scarcity of labeled medical imaging data increases the risk of overfitting. To tackle this issue, this paper proposes a novel fuzzy c-means (FCM) model that integrates a deep learning approach. To address the limited accuracy of traditional FCM models, which employ Euclidean distance as a distance measure, we introduce a measurement function based on the skewed normal distribution. This function enables us to capture more precise information about the distribution of the image. Additionally, we construct a regularization term based on the Kullback-Leibler (KL) divergence of high-confidence deep learning results. This regularization term helps enhance the final segmentation accuracy of the model. Moreover, we incorporate orthogonal basis functions to estimate the bias field and integrate it into the improved FCM method. This integration allows our method to simultaneously segment the image and estimate the bias field. The experimental results on both simulated and real brain MR images demonstrate the robustness of our method, highlighting its superiority over other advanced segmentation algorithms.

Slant Correction and Character String Segmentation using Vertical Transition (수직 천이점 검출을 통한 인쇄체 우편 영상에서의 회전각 보정 및 문자열 추출)

  • 이재용;오현화;장승익;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.469-472
    • /
    • 2003
  • Skew is inevitably occurred in a scanned document image Thus, character recognition systems are generally very sensitive to a skew angle. In this paper, we propose a robust slant correction algorithm based on dithering and estimating vortical transition. Character strings are segmented by projecting the vertical transition point and the slant corrected image. The segmentation method using the vertical transition point can effectively split the character strings touching vertically each other. Experimental results show that the proposed method has achieved robust slant correction and good performance of character string segmentation.

  • PDF

Image Segmentation Using Bi-directional Distribution Functions of Histogram (히스토그램의 양방향 분포함수를 이용한 영상분할)

  • 남윤석;하영호;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.1020-1024
    • /
    • 1987
  • Image segmentation based on the curvature of bi-directiona distribution functions of histogram with no mode informations is proposed. The curvature is an oscillating function and can be approximated to a polynomial form with a least square method using the Chebyshev basis. Nonhomogeneous linea equations are solved by Gauss-elimination method. In the proposed algorithm, critical points of the curvature are obtained on each direction to compensate the segmentation parameters, which can be ignored in only one-directional histogram.

  • PDF

A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks (신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구)

  • 김선아;김백섭
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF