• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.027 seconds

Content based Video Segmentation Algorithm using Comparison of Pattern Similarity (장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘)

  • Won, In-Su;Cho, Ju-Hee;Na, Sang-Il;Jin, Ju-Kyong;Jeong, Jae-Hyup;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1252-1261
    • /
    • 2011
  • In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

Analysis of size distribution of riverbed gravel through digital image processing (영상 처리에 의한 하상자갈의 입도분포 분석)

  • Yu, Kwonkyu;Cho, Woosung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.493-503
    • /
    • 2019
  • This study presents a new method of estimating the size distribution of river bed gravel through image processing. The analysis was done in two steps; first the individual grain images were analyzed and then the grain particle segmentation of river-bed images were processed. In the first part of the analysis, the relationships (long axes, intermediate axes and projective areas) between grain features from images and those measured were compared. For this analysis, 240 gravel particles were collected at three river stations. All particles were measured with vernier calipers and weighed with scales. The measured data showed that river gravel had shape factors of 0.514~0.585. It was found that the weight of gravel had a stronger correlation with the projective areas than the long or intermediate axes. Using these results, we were able to establish an area-weight formula. In the second step, we calculated the projective areas of the river-bed gravels by detecting their edge lines using the ImageJ program. The projective areas of the gravels were converted to the grain-size distribution using the formula previously established. The proposed method was applied to 3 small- and medium- sized rivers in Korea. Comparisons of the analyzed size distributions with those measured showed that the proposed method could estimate the median diameter within a fair error range. However, the estimated distributions showed a slight deviation from the observed value, which is something that needs improvement in the future.

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Urban Object Classification Using Object Subclass Classification Fusion and Normalized Difference Vegetation Index (객체 서브 클래스 분류 융합과 정규식생지수를 이용한 도심지역 객체 분류)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • A widely used method for monitoring land cover using high-resolution satellite images is to classify the images based on the colors of the objects of interest. In urban areas, not only major objects such as buildings and roads but also vegetation such as trees frequently appear in high-resolution satellite images. However, the colors of vegetation objects often resemble those of other objects such as buildings, roads, and shadows, making it difficult to accurately classify objects based solely on color information. In this study, we propose a method that can accurately classify not only objects with various colors such as buildings but also vegetation objects. The proposed method uses the normalized difference vegetation index (NDVI) image, which is useful for detecting vegetation objects, along with the RGB image and classifies objects into subclasses. The subclass classification results are fused, and the final classification result is generated by combining them with the image segmentation results. In experiments using Compact Advanced Satellite 500-1 imagery, the proposed method, which applies the NDVI and subclass classification together, showed an overall accuracy of 87.42%, while the overall accuracy of the subchannel classification technique without using the NDVI and the subclass classification technique alone were 73.18% and 81.79%, respectively.

Preprocessing Effect by Using k-means Clustering and Merging .Algorithms in MR Cardiac Left Ventricle Segmentation (자기공명 심장 영상의 좌심실 경계추출에서의 k 평균 군집화와 병합 알고리즘의 사용으로 인한 전처리 효과)

  • Ik-Hwan Cho;Jung-Su Oh;Kyong-Sik Om;In-Chan Song;Kee-Hyun Chang;Dong-Seok Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • For quantitative analysis of the cardiac diseases. it is necessary to segment the left-ventricle (LY) in MR (Magnetic Resonance) cardiac images. Snake or active contour model has been used to segment LV boundary. However, the contour of the LV front these models may not converge to the desirable one because the contour may fall into local minimum value due to image artifact inside of the LY Therefore, in this paper, we Propose the Preprocessing method using k-means clustering and merging algorithms that can improve the performance of the active contour model. We verified that our proposed algorithm overcomes local minimum convergence problem by experiment results.

Efficient Character Segmentation Technique in the Natuaral Images Containing Character Sequences (문자열을 포함하는 자연 영상에서의 효과적인 문자 추출 기법)

  • Kim, Jong-Ho;Park, Sang-Hyun;Kang, Eui-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.907-910
    • /
    • 2011
  • This paper proposes a character segmentation algorithm of steel plate images composed of adaptive binarization by the SCW (Sliding Concentric Windows) technique, the object labelling by CCA (Connected Component Analysis), and 2D projection method. The SCW technique carries out the grayscale-to-binary image conversion in consideration of local characteristics of images. The character decision algorithm followed by the labelling technique by CCA (Connected Component Analysis) determines the character area effectively reducing the noise effect. The 2D projection with horizontal and vertical directions produces a tight bounding box for a character based on the cross points. Experimental results indicate that the proposed algorithm segments the characters in steel plate images effectively. The proposed algorithm can be applied to the devices with limited resources due to its excellent performance and low complexity.

  • PDF

MRF-based Iterative Class-Modification in Boundary (MRF 기반 반복적 경계지역내 분류수정)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.139-152
    • /
    • 2004
  • This paper proposes to improve the results of image classification with spatial region growing segmentation by using an MRF-based classifier. The proposed approach is to re-classify the pixels in the boundary area, which have high probability of having classification error. The MRF-based classifier performs iteratively classification using the class parameters estimated from the region growing segmentation scheme. The proposed method has been evaluated using simulated data, and the experiment shows that it improve the classification results. But, conventional MRF-based techniques may yield incorrect results of classification for remotely-sensed images acquired over the ground area where has complicated types of land-use. A multistage MRF-based iterative class-modification in boundary is proposed to alleviate difficulty in classifying intricate land-cover. It has applied to remotely-sensed images collected on the Korean peninsula. The results show that the multistage scheme can produce a spatially smooth class-map with a more distinctive configuration of the classes and also preserve detailed features in the map.

Analysis of Level of Difficulty of Fingerprint Database by matching Orientation field (Orientation field의 정합을 이용한 지문영상 DB의 난이도 분석)

  • Park Noh-Jun;Moon Ji-Hyun;Kim Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.91-103
    • /
    • 2006
  • This paper proposes a methodology to evaluate the quality and level of difficulty of fingerprint image databases, which leads to objective evaluation for the performance of fingerprint recognition system. Influencing factors to fingerprint matching are defined and the matching performance between two fingerprint images is evaluated using segmentation and orientation filed. In this study, a hierarchical processing method is proposed to measure an orientation field, which is able to improve the matching speed and accuracy. The results of experiments demonstrate that the defined influencing factors can describe the characteristics of fingerprint databases. Level of difficulty for fingerprint databases enables the performance of fingerprint recognition algorithms to be evaluated and compared even with different databases.

Collaborative Modeling of Medical Image Segmentation Based on Blockchain Network

  • Yang Luo;Jing Peng;Hong Su;Tao Wu;Xi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.958-979
    • /
    • 2023
  • Due to laws, regulations, privacy, etc., between 70-90 percent of providers do not share medical data, forming a "data island". It is essential to collaborate across multiple institutions without sharing patient data. Most existing methods adopt distributed learning and centralized federal architecture to solve this problem, but there are problems of resource heterogeneity and data heterogeneity in the practical application process. This paper proposes a collaborative deep learning modelling method based on the blockchain network. The training process uses encryption parameters to replace the original remote source data transmission to protect privacy. Hyperledger Fabric blockchain is adopted to realize that the parties are not restricted by the third-party authoritative verification end. To a certain extent, the distrust and single point of failure caused by the centralized system are avoided. The aggregation algorithm uses the FedProx algorithm to solve the problem of device heterogeneity and data heterogeneity. The experiments show that the maximum improvement of segmentation accuracy in the collaborative training mode proposed in this paper is 11.179% compared to local training. In the sequential training mode, the average accuracy improvement is greater than 7%. In the parallel training mode, the average accuracy improvement is greater than 8%. The experimental results show that the model proposed in this paper can solve the current problem of centralized modelling of multicenter data. In particular, it provides ideas to solve privacy protection and break "data silos", and protects all data.