• 제목/요약/키워드: image segmentation method

검색결과 1,342건 처리시간 0.026초

A Method for Tree Image Segmentation Combined Adaptive Mean Shifting with Image Abstraction

  • Yang, Ting-ting;Zhou, Su-yin;Xu, Ai-jun;Yin, Jian-xin
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1424-1436
    • /
    • 2020
  • Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

물체 인식을 위한 개선된 모드 영상 분할 기법 (Implementation Mode Image Segmentation Method for Object Recognition)

  • 문학룡;한운동;조흥기;한성용;전희종
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, implementation mode image segmentation method for separate image is presented. The method of segmentation image in conventional method, the error are generated by the threshold values. To improve these problem for segmentation image, the calculation of weighting factor using brightness distribution by histogram of stored images are proposed. For safe image of object and laser image, the computed weighting factor is set to the threshold value. Therefore the image erosion and spread are improved, the correct and reliable informations can be measured. In this paper, the system of 3-D extracting information using the proposed algorithm can be applied to manufactory automation, building automation, security guard system, and detecting information system for all of the industry areas.

Segmentation of Neuronal Axons in Brainbow Images

  • Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1417-1429
    • /
    • 2012
  • In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.

Inversion of Spread-Direction and Alternate Neighborhood System for Cellular Automata-Based Image Segmentation Framework

  • Lee, Kyungjae;Lee, Junhyeop;Hwang, Sangwon;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제4권1호
    • /
    • pp.21-23
    • /
    • 2017
  • Purpose In this paper, we proposed alternate neighborhood system and reverse spread-direction approach for accurate and fast cellular automata-based image segmentation method. Materials and Methods On the basis of a simple but effective interactive image segmentation technique based on a cellular automaton, we propose an efficient algorithm by using Moore and designed neighborhood system alternately and reversing the direction of the reference pixels for spreading out to the surrounding pixels. Results In our experiments, the GrabCut database were used for evaluation. According to our experimental results, the proposed method allows cellular automata-based image segmentation method to faster while maintaining the segmentation quality. Conclusion Our results proved that proposed method improved accuracy and reduced computation time, and also could be applied to a large range of applications.

SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 (Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.43-54
    • /
    • 2005
  • 이본 논문에서는 Bayesian 영상 분할법과 SOM(Self Organization feature Map)을 이용한 텍스쳐(Texture) 분할 방법을 제안한다. SOM의 입력으로 다중 스케일에서의 웨이블릿 계수를 사용하고, 훈련된 SOM으로부터 관측 데이터에 대한 우도(尤度, likelihood)와 사후확률을 구하는 방법을 제시한다. 훈련된 SOM들로부터 구한 사후확률과 MAP(Maximum A Posterior) 분류법을 이용하여 텍스쳐 분할을 얻는다. 그리고 문맥 정보를 이용하여 텍스쳐 분할 결과를 개선하였다. 제안 방법은 HMT(Hidden Markov Tree)을 이용한 텍스쳐 분할보다 더 우수한 결과를 보여준다. 또한 SOM과 HMTseg라고 불리는 다중스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 결과는 HMT와 HMTseg을 이용한 결과보다 더 우수한 성능을 보여준다.

다중스케일 노멀라이즈 컷을 이용한 영상분할 (Image Segmentation using Multi-scale Normalized Cut)

  • 이재현;이지은;박래홍
    • 방송공학회논문지
    • /
    • 제18권4호
    • /
    • pp.609-618
    • /
    • 2013
  • 본 논문은 기존 그래프 컷 기반 영상분할의 성능은 유지하면서 연산속도가 빠른 영상분할 방법을 제안한다. 기존 그래프 컷 기반 영상분할은 높은 성능을 보이지만 고유쌍 연산으로 인해 분할 속도가 느리다는 단점을 지닌다. 이는 고유쌍 연산에서 영상 내 모든 화소 사이의 유사도를 고려하여 정방행렬을 만들기 때문이다. 그러므로 제안하는 방법은 영상을 여러 영역으로 분할하여 작은 크기의 정방행렬을 구성하고 이를 통해 고유쌍 연산 속도를 크게 향상시킨다. 본 논문에서는 대수적 다중 격자를 이용한 다중스케일 영상분할법을 제안하고 실험 결과를 통해 제안하는 방법이 기존 영상분할 방법보다 그 성능이 더 우수함을 보인다.

A MULTIPHASE LEVEL SET FRAMEWORK FOR IMAGE SEGMENTATION USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • TERBISH, DULTUYA;ADIYA, ENKHBOLOR;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권2호
    • /
    • pp.63-73
    • /
    • 2017
  • Segmenting the image into multiple regions is at the core of image processing. Many segmentation formulations of an images with multiple regions have been suggested over the years. We consider segmentation algorithm based on the multi-phase level set method in this work. Proposed method gives the best result upon other methods found in the references. Moreover it can segment images with intensity inhomogeneity and have multiple junction. We extend our method (GLIF) in [T. Dultuya, and M. Kang, Segmentation with shape prior using global and local image fitting energy, J.KSIAM Vol.18, No.3, 225-244, 2014.] using a multiphase level set formulation to segment images with multiple regions and junction. We test our method on different images and compare the method to other existing methods.

Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구 (A Study of Automatic Medical Image Segmentation using Independent Component Analysis)

  • 배수현;유선국;김남형
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.