• Title/Summary/Keyword: image registration

Search Result 515, Processing Time 0.029 seconds

Region-based ICP algorithm in TKR operation (인공무릎관절 수술에서의 영역기반 ICP 알고리즘)

  • Key Jae-Hong;Lee Moon-Kyu;Lee Chang-Yang;Kim Dong-M.;Yoo Sun-K.;Choi Kui-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.185-186
    • /
    • 2006
  • Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.

  • PDF

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

Multi-resolution Image Registration

  • Wisetphanichkij, Sompong;Dejhan, Kobchai;Likitkarnpaiboon, Prayong;Cheevasuvit, Fusak;Sra-Ium, Napat;Vorrawat, Vinai;Pienvijarnpong, Chanchai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.263-265
    • /
    • 2003
  • The computation cost of image registration is affected by searching data size and space. This paper proposes an efficient image registration algorithm that uses multi-resolution wavelet decomposed image to reduce the data size search. The algorithm determines the correlation detection at low resolution on low-pass sub bands of wavelet and generate mask for higher resolution as part of a coarse to fine registration algorithm. The correlation matching is defined for coarse resolution similarity measurement, while mutual information (MI) is used at fine resolution. The results show that the new efficient mask-based algorithm improves computational efficiency and yields robust and consistent image registration results.

  • PDF

2D Industrial Image Registration Method for the Detection of Defects (결함 검출을 위한 2차원 산업 영상 정합 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1369-1376
    • /
    • 2012
  • In this paper, we propose 2D industrial image registration method for the detection of defects. Proposed method performs preprocessing to smooth the original image with the preservation of the edge for the robust registration against general noise. Then, x-direction gradient magnitude image and corresponding binary image are generated. Density analysis around neighborhood regions per pixel are performed to generate feature image for preventing mis-registration due to moire-like patterns, which frequently happen in industrial images. Finally, 2D image registration based on phase correlation between feature images is performed to calculate translational parameters to align two images rapidly and optimally. Experimental results showed that the registration accuracy of proposed method for the real industrial images was 100% and our method was about twenty times faster than the previous method. Our fast and accurate method could be used for the real industrial applications.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

Registration of 3D CT Data to 2D Endoscopic Image using a Gradient Mutual Information based Viewpoint Matching for Image-Guided Medialization Laryngoplasty

  • Yim, Yeny;Wakid, Mike;Kirmizibayrak, Can;Bielamowicz, Steven;Hahn, James
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.4
    • /
    • pp.368-387
    • /
    • 2010
  • We propose a novel method for the registration of 3D CT scans to 2D endoscopic images during the image-guided medialization laryngoplasty. This study aims to allow the surgeon to find the precise configuration of the implant and place it into the desired location by employing accurate registration methods of the 3D CT data to intra-operative patient and interactive visualization tools for the registered images. In this study, the proposed registration methods enable the surgeon to compare the outcome of the procedure to the pre-planned shape by matching the vocal folds in the CT rendered images to the endoscopic images. The 3D image fusion provides an interactive and intuitive guidance for surgeon by visualizing a combined and correlated relationship of the multiple imaging modalities. The 3D Magic Lens helps to effectively visualize laryngeal anatomical structures by applying different transparencies and transfer functions to the region of interest. The preliminary results of the study demonstrated that the proposed method can be readily extended for image-guided surgery of real patients.

Image Registration by Optimization of Mutual Information (상호정보 최적화를 통한 영상정합)

  • Hong, Hel-Len;Kim, Myoung-Hee
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.155-163
    • /
    • 2001
  • In this paper, we propose an image registration method by optimization of mutual information to provide a significant infonnation from multimodality images. The method applies mutual infonnation to measure the statistical dependency'r information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. We show the registration results optimizing mutual information between brain MR image and brain CT image and the comparison results with additive gaussian noise. Since our method uses the native image rather than prior segmentation or feature extraction, no user interaction is required and the accuracy of registration is improved. In addition, it shows the robustness against the noise.

  • PDF

INTERACTIVE FEATURE EXTRACTION FOR IMAGE REGISTRATION

  • Kim Jun-chul;Lee Young-ran;Shin Sung-woong;Kim Kyung-ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.641-644
    • /
    • 2005
  • This paper introduces an Interactive Feature Extraction (!FE) approach for the registration of satellite imagery by matching extracted point and line features. !FE method contains both point extraction by cross-correlation matching of singular points and line extraction by Hough transform. The purpose of this study is to minimize user's intervention in feature extraction and easily apply the extracted features for image registration. Experiments with these imagery dataset proved the feasibility and the efficiency of the suggested method.

  • PDF

Sub-satellite Point Observation and Image Registration Accomplishment with GOES-9 IMC-Off Status

  • Lim Hyun-Su;Ahn Sang-il;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.212-215
    • /
    • 2004
  • GOES-9 has been operated with the status of the Image Motion Compensation(IMC) off since last October. As the IMC function turned off, the sub-satellite point(SSP) of GVAR data was changed with the effect of the satellite motions. This makes the image registration, to maintain pixels within an image and between successive images to their earth-referenced information, not to be possible any more. In the paper, we introduce the method to accomplish image registration and the result of the SSP observation with the status of IMC off.

  • PDF

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.