• Title/Summary/Keyword: image probing

Search Result 24, Processing Time 0.028 seconds

Tip-enhanced Electron Emission Microscopy Coupled with the Femtosecond Laser Pulse

  • Jeong, Dahyi;Yeon, Ki Young;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.891-894
    • /
    • 2014
  • The ultrashort electron pulse, laser-emitted from the metal tip apex has been characterized and used as a probing source for a new electron microscope to visualize the morphology of the gold-mesh in the nanometric resolution. As the gap between the tungsten tip and Au-surface is approached within a few nm, the large electromagnetic field enhancement for the incident P-polarized laser pulse with respect to the tip-sample axis is strongly observed. Here, we demonstrate that the time-resolved tip-enhanced electron emission microscope (TEEM) can be implemented on the laboratory table top to give the two-dimensional image, opening lots of challenges and opportunities in the near future.

Development of Laser Diode Test Device using Feedback Control with Machine Vision (비젼 피드백 제어를 이용한 광통신 Laser Diode Test Device 개발)

  • 유철우;송문상;김재희;박상민;유범상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1663-1667
    • /
    • 2003
  • This thesis is on tile development of LD(Laser Diode) chip tester and the control system based on graphical programming language(LabVIEW) to control the equipment. The LD chip tester is used to test the optic power and the optic spectrum of the LD Chip. The emitter size of LD chip and the diameter of the receiver(optic fiber) are very small. Therefore, in order to test each chip precisely, this tester needs high accuracy. However each motion part of the tester could not accomplish hish accuracy due to the limit of the mechanical performance. Hence. an image processing with machine vision was carried out in order to compensate for the error. and also a load test was carried out so as to reduce tile impact of load on chip while the probing motion device is working. The obtained results were within ${\pm}$5$\mu\textrm{m}$ error.

  • PDF

Characterization of Fiber Direction Influence in CFRP Composites Using Advanced NDE Techniques

  • Im, Kwang-Hee;Jang, Ju-Hwan;Back, Chong-Gui;Jeong, Ok-Su;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1003-1007
    • /
    • 2012
  • A nondestructive technique would be very useful. Advanced NDE T-ray (terahertz ray) techniques of technology and instrumentation has provided a probing field on the electromagnetic spectrum. However, the T-ray is limited in order to penetrate a conducting material to some degree. Here, the T-ray would not go through easily the CFRP composite laminates since carbon fibers are electrically conducting while the epoxy matrix is not. So, investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied for a 48-ply thermoplastic PPS(poly-phenylene sulfide)-based CFRP solid laminate. It is found that the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers.

Analysis and Control f Contact Mode AFM (접촉모드 AFM의 시스템 분석 및 제어)

  • 정회원;심종엽;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

Sungsan-dong 'M' Oriental Clinic (성산동 'M'한의원)

  • Kim, Heung-Seob
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • As architects and interior designers work farther and farther afield, so the connection of buildings to the particular place they are constructed becomes increasingly. Also, during the past twenty years they have made a habit of asking probing and often uncomfortable questions about how architectural conventions force patterns of behavior. In place of bricks and mortar, they have mixed store, office, clinic, and residence. In this project, the buildings consist of pharmacy, store, dental clinic, oriental clinic and residence. This building was designed by architect to have panoramic views. The view of surrounding road from every wall becomes a constant point of reference, a back drop against which the whole house revolves. Now, all the words can be suitable for describing the oriental clinics. But the oriental clinics of these days may construct the unintentional common image, may be because of the clients sense about the finishing materials or colors in vogue. The Importance of identity in the design of oriental clinic becomes higher increasingly, and with the same reason, the conviction of interior designer.

  • PDF

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF

A 300 GHz Imaging Detector and Image Acquisition Based on 65-nm CMOS Technology (65-nm CMOS 300 GHz 영상 검출기 및 영상 획득)

  • Yoon, Daekeun;Song, Kiryong;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.791-794
    • /
    • 2014
  • In this work, a 300 GHz imaging detector has been developed and image has been acquired in a 65-nm CMOS technology. The circuit was designed based on the square-law of MOSFET devices. The fabricated detector exhibits a maximum responsivity of 2,270 V/W and minimum NEP of $38pW/Hz^{1/2}$ at 285 GHz, and NEP< ${\sim}200pW/Hz^{1/2}$ for 250~305 GHz range. The chip size is $400{\mu}m{\times}450{\mu}m$ including the probing pads and a balun, while the core of the circuit occupies only $150{\mu}m{\times}100{\mu}m$.

A Study on Improving the Efficiency of Facility Safety Inspection Work Using Images (영상을 활용한 시설물 안전점검 작업 효율성 향상 방안 연구)

  • Jeon, Kyungsik;Kim, Jintae;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • In general, the daily safety inspection activities, which investigate damages in structures and measures the size of the damage, have been relied heavily on the visual inspection so far. Since the probe of the condition and performance of facilities by such personnel is often dependent on the subjective judgment of the investigator, the consistency and repeatability of the probing results may reduce. Particularly, damage located in a difficult-to-reach place depends mainly on experience with the naked eye, and an unsafe method using a ladder has mainly applied when necessary. Therefore, in this study, we tried to propose a way of using images that can reduce the deviation between safety inspection investigators, enhance objectivity, and improve the safety of workers. In this study, we have applied homographic transformation as a method of correcting the image. As a result of analyzing the size of the damage in the corrected image of the test subject, it confirms that the accuracy of measuring the magnitude of the damage can satisfy the target levels of 5.0mm and 0.005m2, the target accuracy levels. As a result of the field verification test to which the proposed image correction technique applied, the coefficient of variation of the crack length in the structure decreased from 5.4~7.0% to 0.072~0.12%, and that of the damaged area from 10.9% to 1.6%. It confirms that the measurement accuracy is improved. Therefore, it is expected that this study on the image utilization technique in safety inspection activities can increase the accuracy of damage measurement and improve the reliability of the safety inspection reports and exterior survey drawings.

Real-time 3D Calibration for Pose Computation in Extended Environments (확장 환경에서의 위치 및 방향 정보 계산을 위한 실시간 3차원 위치 계산)

  • Park, Jun;Jang, Jun-Ho;Kwon, Jang-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.455-461
    • /
    • 2003
  • In Computer Vision-based pose computation systems, markers are often used as reference points: artificially-designed (to maximize the efficiency in detection) markers are installed in the environment and their positions are measured using probing devices such as mechanical digitizers and laser range finders. The camera (or the user) pose is computed based on three or more markers 3D positions and the 2D positions in the image. However, in extended environments, it is impractical to install enough number of markers to be detected by the camera. Instead, natural features, if detected and tracked efficiently, can be used as reference points. These natural features 3D positions need to be measured before they can be used as reference points. In this paper, technologies of utilizing natural features are introduced for pose computation or refinement in extended environments.

  • PDF

Surface Imaging of Barley Aleurone Cell by Atomic Force Microscopy

  • Kim, Tae-Wan;Huh, Kwang-Woon;Kim, Seung-Hwan;Ku, Hyun-Hwoi;Lee, Byung-Moo;Kim, Jae-Yoon;Seo, Yong-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • To observe and analysis ultra-microscopically barley aleurone cell surface, atomic force microscope (AFM) was used. Seed coat of early maturing germplasm, eam9, was dehulled and scanned by non-contact mode. We have obtained the high resolution topographic 3-dimensional image of barley aleurone layer with high resolution. These images showed the membrane proteins in barley aleurone cell. One channel protein and numerous peripheral or integral proteins were detected in a area of 100 $\mu\textrm{m}^2$. Furthermore, we found that their widths were ranged from 50 to 750nm and lengths from 0 to 66 $\mu\textrm{m}$. The thickness of aleurone layer was measured by scanning electron microscope. The thickness at early developmental stage was about 16 and then the aleurone cell enlarged upto 57 $\mu\textrm{m}$${\mu}{\textrm}{m}$ at least until 42 days after anthesis. In this study, we firstly reported on the ultrastructural AFM analysis of living aleurone cell as a biological specimen. It was clearly suggested that AFM will become an powerful tool for probing both the structural properties of biological samples.