• Title/Summary/Keyword: image of scientists

Search Result 1,102, Processing Time 0.02 seconds

Efficient Correction of a Rotated Object Using Radon Transform (라돈 변환을 이용한 회전된 물체의 효율적인 보정)

  • Cho, Bo-Ho;Jung, Sung-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.291-295
    • /
    • 2008
  • In this paper, we propose an input image reduction method to solve the problems of Radon transform which is a line structure analysis tool to correct a rotated object through a vision system. First we extract an object image removed background from the input image. Then we also select a reduced object image as a final input mage of Radon transform from the object image by considering slope. Finally we extract a rotated angle by using Radon transform with the final input image and correct the rotated object with the angle. In experimental results, we could improve the process time of about 64%, reduce the memory space of about 18% and make progress the line detection rate of about 18%.

3D Motion of Objects in an Image Using Vanishing Points (소실점을 이용한 2차원 영상의 물체 변환)

  • 김대원;이동훈;정순기
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.621-628
    • /
    • 2003
  • This paper addresses a method of enabling objects in an image to have apparent 3D motion. Many researchers have solved this issue by reconstructing 3D model from several images using image-based modeling techniques, or building a cube-modeled scene from camera calibration using vanishing points. This paper, however, presents the possibility of image-based motion without exact 3D information of scene geometry and camera calibration. The proposed system considers the image plane as a projective plane with respect to a view point and models a 2D frame of a projected 3D object using only lines and points. And a modeled frame refers to its vanishing points as local coordinates when it is transformed.

A Similarity Ranking Algorithm for Image Databases (이미지 데이터베이스 유사도 순위 매김 알고리즘)

  • Cha, Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.366-373
    • /
    • 2009
  • In this paper, we propose a similarity search algorithm for image databases. One of the central problems regarding content-based image retrieval (CBIR) is the semantic gap between the low-level features computed automatically from images and the human interpretation of image content. Many search algorithms used in CBIR have used the Minkowski metric (or $L_p$-norm) to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information. Our new search algorithm tackles this problem by employing new similarity measures and ranking strategies that reflect the nonlinearity of human perception and contextual information. Our search algorithm yields superior experimental results on a real handwritten digit image database and demonstrates its effectiveness.

Clustering Representative Annotations for Image Browsing (이미지 브라우징 처리를 위한 전형적인 의미 주석 결합 방법)

  • Zhou, Tie-Hua;Wang, Ling;Lee, Yang-Koo;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.62-65
    • /
    • 2010
  • Image annotations allow users to access a large image database with textual queries. But since the surrounding text of Web images is generally noisy. an efficient image annotation and retrieval system is highly desired. which requires effective image search techniques. Data mining techniques can be adopted to de-noise and figure out salient terms or phrases from the search results. Clustering algorithms make it possible to represent visual features of images with finite symbols. Annotationbased image search engines can obtains thousands of images for a given query; but their results also consist of visually noise. In this paper. we present a new algorithm Double-Circles that allows a user to remove noise results and characterize more precise representative annotations. We demonstrate our approach on images collected from Flickr image search. Experiments conducted on real Web images show the effectiveness and efficiency of the proposed model.

  • PDF

Image Content Modeling for Meaning-based Retrieval (의미 기반 검색을 위한 이미지 내용 모델링)

  • 나연묵
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color. shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.

Image Resolution Improvement Using Image Loss Information (영상의 손실 정보를 이용하는 영상 해상도 개선)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.573-577
    • /
    • 2010
  • Image resolution improvement is commonly technique for applications such as image reconstruction or enlargement. It is important to remove image quality degradation such as blocking effect or artificiality occurrence. In this paper, we propose image resolution improvement method using loss information of image. The proposed compute and estimate by low level interpolation of obtained low resolution image, it is applied by interpolated high resolution as 1-stage interpolation. We generate last interpolation image by iteration of error computation and application between obtained low resolution image and 1-stage interpolation image. By experiments using same test images, we confirmed improvement over 3.2dB of average PSNR and enhancement of subject image quality. Also, we can reduce more than 85% computation complexity. The proposed image resolution improvement method may be helpful for various applications of image processing.

An Image Segmentation method using Morphology Reconstruction and Non-Linear Diffusion (모폴로지 재구성과 비선형 확산을 적용한 영상 분할 방법)

  • Kim, Chang-Geun;Lee, Guee-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.523-531
    • /
    • 2005
  • Existing methods for color image segmentation using diffusion can't preserve contour information, or noises with high gradients become more salient as the number of times of the diffusion increases, resulting in over-segmentation when applied to watershed. This paper proposes a method for color image segmentation by applying morphological operations together with nonlinear diffusion For an input image, transformed into LUV color space, closing by reconstruction and nonlinear diffusion are applied to obtain a simplified image which preserves contour information with noises removed. With gradients computed from this simplified image, watershed algorithm is applied. Experiments show that color images are segmented very effectively without over-segmentation.

Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection

  • Hou, Yanli
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in fundus images. To decrease the influence of the optic disk, and emphasize the vessels for each retinal image, a multidirectional morphological top-hat transform with rotating structuring elements is first applied to the background homogenized retinal image. Then, an improved multiscale line detector is presented to produce a vessel response image, and yield the retinal blood vessel tree for each retinal image. Since different line detectors at varying scales have different line responses in the multiscale detector, the line detectors with longer length produce more vessel responses than the ones with shorter length; the improved multiscale detector combines all the responses at different scales by setting different weights for each scale. The methodology is evaluated on two publicly available databases, DRIVE and STARE. Experimental results demonstrate an excellent performance that approximates the average accuracy of a human observer. Moreover, the method is simple, fast, and robust to noise, so it is suitable for being integrated into a computer-assisted diagnostic system for ophthalmic disorders.