• Title/Summary/Keyword: image guided radiotherapy

Search Result 50, Processing Time 0.03 seconds

Interfraction variation and dosimetric changes during image-guided radiation therapy in prostate cancer patients

  • Fuchs, Frederik;Habl, Gregor;Devecka, Michal;Kampfer, Severin;Combs, Stephanie E.;Kessel, Kerstin A.
    • Radiation Oncology Journal
    • /
    • v.37 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Purpose: The aim of this study was to identify volume changes and dose variations of rectum and bladder during radiation therapy in prostate cancer (PC) patients. Materials and Methods: We analyzed 20 patients with PC treated with helical tomotherapy. Daily image guidance was performed. We re-contoured the entire bladder and rectum including its contents as well as the organ walls on megavoltage computed tomography once a week. Dose variations were analyzed by means of Dmedian, Dmean, Dmax, V10 to V75, as well as the organs at risk (OAR) volume. Further, we investigated the correlation between volume changes and changes in Dmean of OAR. Results: During treatment, the rectal volume ranged from 62% to 223% of its initial volume, the bladder volume from 22% to 375%. The average Dmean ranged from 87% to 118% for the rectum and 58% to 160% for the bladder. The Pearson correlation coefficients between volume changes and corresponding changes in Dmean were -0.82 for the bladder and 0.52 for the rectum. The comparison of the dose wall histogram (DWH) and the dose volume histogram (DVH) showed that the DVH underestimates the percentage of the rectal and bladder volume exposed to the high dose region. Conclusion: Relevant variations in the volume of OAR and corresponding dose variations can be observed. For the bladder, an increase in the volume generally leads to lower doses; for the rectum, the correlation is weaker. Having demonstrated remarkable differences in the dose distribution of the DWH and the DVH, the use of DWHs should be considered.

Target motion analysis of the respiratory gated guided radiotherapy in liver cancer patients using 4D-CT (4D-CT와 호흡동조시스템을 이용한 간암 환자의 방사선치료 표적 움직임 분석)

  • Dong, Kyung-Rae;Park, Byung-Soo;Kim, Sae-Sark;Kweon, Dae-Cheol;Goo, Eun-Hoe;Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • The ultimate goal of radiation treatment is to use enough radiation dosage in order to examine a tumor while protecting normal tissue. Respiratory guided radiotherapy is being clinically implemented to examine a given stabilized area in order to compensate for the problems of patient breathing. This study investigates the effects of breathing movements on 40 patients with liver cancer through the actual radiation therapy plan using 4D-CT and respiratory guided radiotherapy using RPM. Using a commercial RPM respiratory gating system 4D-CT, we acquired 4D CT on multislice helical CT scanners that use different approaches to 4D CT image reconstruction. The results from analyzing forty patients according to age and direction showed no relationship between gender and transition change. The mean left-right, anteroposterior, and craniocaudal total movements were $3.19{\pm}1.29$, $5.44{\pm}2.07$, and $12.54{\pm}4.70$ mm, respectively. Changes were the largest with CC directions and as patients advanced in age, movements were larger. Therefore, as changes occur in treatment areas because of movements caused from breathing, respiratory gating system is put into operation to revise movement and can increase the radiotherapeutics effects in treating liver cancer.

Usability of 2D/2D Match for Image Guided Radiotherapy (IGRT) of Prostate Cancer with Fiducial Markers (전립선 암 환자의 영상유도 방사선 치료 시 Fiducial Marker를 이용한 2D/2D Match의 유용성에 대한 연구)

  • Bae, Sun-Myung;Yang, Oh-Nam;Song, Heung-Kwon;Back, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Purpose: To study the efficacy of marker match with using kilovoltage (KV) X-ray among multiple image guidance that referring tree fiducial marker in radiation therapy for prostate cancer patients. Materials and Methods: KV two-dimantional images (anterior-posterior, right-left) and cone-beam CT volumetric images were acquired after setup for patients with three fiducial markers. Compare the position of the fiducial marker of reference plan computed tomography (CT) and of KV, CBCT images; then decide the shift score of X, Y, and Z. This study executed 5 times on 10 patients and analyzed the shift value. Results: In the radiation therapy using fiducial marker, The function of marker match showed the same direction tendency as the CBCT, and showed X, Y, Z difference of about 0.6, 0.7, and 0.8 (unit: mm). Conclusion: Comparing to this, the result of shift value using 2D marker match showed less than 1.0 mm difference. The function of marker match is considered more useful in time-wise and effective dose rather than CBCT. Therefore, Both methods are used to treat patients for prostate cancer.

  • PDF

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.

Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy (첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰)

  • Choi, Sang Gyu
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

Set-up errors in head and neck cancer treated with IMRT technique assessed by cone-beam computed tomography: a feasible protocol

  • Delishaj, Durim;Ursino, Stefano;Pasqualetti, Francesco;Matteucci, Fabrizio;Cristaudo, Agostino;Soatti, Carlo Pietro;Barcellini, Amelia;Paiar, Fabiola
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Purpose: To investigate set-up errors, suggest the adequate planning target volume (PTV) margin and image-guided radiotherapy frequency in head and neck (H&N) cancer treated with intensity-modulated radiotherapy (IMRT) assessed by kV cone-beam computed tomography (CBCT). Methods: We analyzed 360 CBCTs in 60 patients with H&N cancer treated with IMRT. The target delineation was contoured according to ICRU62. PTVs were generated by adding a 3-5 mm margin in all directions to the respective clinical target volumes. The kV CBCT images were obtained at first three days of irradiation and weekly thereafter. The overall mean displacement, range, systematic (${\Sigma}$) and random (${\sigma}$) errors were calculated. Adequate PTV margins were calculated according to the van Herk formula ($2.5{\Sigma}+0.7r$). Results: The mean of set-up errors was less than 2 mm in any direction. The overall frequency of set-up displacements greater than 3 mm was 3.9% in medial-lateral (ML) direction, 8% in superior-inferior (SI) direction, and 15.5% in anterior-posterior (AP) direction. The range of translations shifts was 0-9 mm in ML direction, 0-5 mm in SI direction and 0-10 mm in AP direction, respectively. After systematic set-up errors correction, the adequate margin to overcome the problem of set-up errors was found to be less than 3 mm. Conclusion: Image-guided kV CBCT was effective for the evaluation of set-up accuracy in H&N cancer. The kV CBCT at first three fractions and followed-by weekly appears adequate for reducing significantly set-up errors in H&N cancer treated with IMRT technique. Finally, 3-5 mm PTV margins appear adequate and safe to overcome the problem of set-up errors.

How Image Quality Affects Determination of Target Displacement When Using kV Cone-beam Computed Tomography (CBCT) (kV Cone-beam CT를 사용한 치료준비에서 재구성 영상의 품질이 표적 위치 결정에 미치는 영향)

  • Oh, Seung-Jong;Kim, Si-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.207-211
    • /
    • 2006
  • The advent of kV cone-beam computed tomography (CBCT) integrated with a linear accelerator allows for more accurate Image-guided radiotherapy (IGRT). IGRT is the technique that corrects target displacement based on internal body information. To do this, the CBCT Image set is acquired just before the beam is delivered and registered with the simulation CT Image set. In this study, we compare the registration results according to the CBCT's reconstruction quality (either high or medium). A total of 56 CBCT projection data from 6 patients were analyzed. The translation vector differences were within 1 mm in all but 3 cases. For rotation displacement difference, components of all three axes were considered and 3 out of 168 ($56{\times}3$ axes) cases showed more than lo of rotation differences.

  • PDF

Reproducibiity of setup error for prostate cancer by ultrasound image-guided radiation therapy (전립선암에 대한 초음파 영상유도 방사선치료의 Setup 오차 분석을 통한 재현성 평가)

  • Park, Sung Yong;Lim, Seung Kyu;Si, Myoung Geun;Lee, Ji Hae;Kim, Jong Yeol;Cho, Eun Joo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • Purpose: To evaluate the reproducibility of image-guided radiotherapy using ultrasonography which is non-invasive, without radiation exposure for prostate cancer patients. Materials and Methods: We analyzed the setup variation of 1,105 images for 26 prostate cancer patients and the mean, standard deviation and 3D-error in AP, RL and SI directions. Setup variations were classified 0-1 mm, 1-3 mm, 3-5 mm, 5 mm and more. Results: The mean and standard deviation of setup variation in AP, RL and SI directions was $1.87{\pm}1.36mm$, $1.73{\pm}1.22mm$ and $2.01{\pm}1.40mm$. The 3D-error in AP, RL and SI directions was $3.63{\pm}1.63mm$. The frequency of setup variation in AP direction was 29 % in the range from 0 mm to 1 mm, 50.2 % in the range from 1 mm to 3 mm, 19.6 % in the range from 3 mm to 5 mm and 1.3 % in the range of 5 mm or more. In RL direction, the frequency was 31.3 % in the range from 0 mm to 1 mm, 52.5 % in the range from 1 mm to 3 mm, 15.8 % in the range from 3 mm to 5 mm and 0.5 % in the range of 5 mm or more. SI direction, the frequency of errors in the range from 0 mm to 1 mm was 26.3 %, 50.2 % in the range from 1 mm to 3 mm, 22.4 % in the range from 3 mm to 5 mm, and 1.1 % in the range of 5 mm or more. Conclusion: The setup error was highest in the SI direction of $2.01{\pm}1.40mm$. The frequency in each direction was the highest in more than 50 % in the range from 1 mm to 3 mm. $Clarity^{TM}$ Auto scan is possible to monitoring the motion of the prostate during the treatment and to repositioning the patient. In conclusion real-time image-guided radiotherapy using ultrasonography will be increase the reproducibility of radiation therapy.

  • PDF

Evaluation of accuracy in the ExacTrac 6D image induced radiotherapy using CBCT (CBCT을 이용한 ExacTrac 6D 영상유도방사선치료법의 정확도 평가)

  • Park, Ho Chun;Kim, Hyo Jung;Kim, Jong Deok;Ji, Dong Hwa;Song, Ju Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.109-121
    • /
    • 2016
  • To verify the accuracy of the image guided radiotherapy using ExacTrac 6D couch, the error values in six directions are randomly assigned and corrected and then the corrected values were compared with CBCT image to check the accurateness of ExacTrac. The therapy coordination values in the Rando head Phantom were moved in the directions of X, Y and Z as the translation group and they were moved in the directions of pitch, roll and yaw as the rotation group. The corrected values were moved in 6 directions with the combined and mutual reactions. The Z corrected value ranges from 1mm to 23mm. In the analysis of errors between CBCT image of the phantom which is corrected with therapy coordinate and 3D/3D matching error value, the rotation group showed higher error value than the translation group. In the distribution of dose for the error value of the therapy coordinate corrected with CBCT, the restricted value of dosage for the normal organs in two groups meet the prescription dose. In terms of PHI and PCI values which are the dose homogeneity of the cancerous tissue, the rotation group showed a little higher in the low dose distribution range. This study is designed to verify the accuracy of ExacTrac 6D couch using CBCT. It showed that in terms of the error value in the simple movement, it showed the comparatively accurate correction capability but in the movement when the angle is put in the couch, it showed the inaccurate correction values. So, if the body of the patient is likely to have a lot of changes in the direction of rotation or there is a lot of errors in the pitch, roll and yaw in ExacTrac correction, it is better to conduct the CBCT guided image to correct the therapy coordinate in order to minimize any side effects.

  • PDF

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF