• Title/Summary/Keyword: image feature descriptor

Search Result 140, Processing Time 0.027 seconds

A Representation and Matching Method for Shape-based Leaf Image Retrieval (모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법)

  • Nam, Yun-Young;Hwang, Een-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1013-1020
    • /
    • 2005
  • This paper presents an effective and robust leaf image retrieval system based on shape feature. Specifically, we propose an improved MPP algorithm for more effective representation of leaf images and show a new dynamic matching algorithm that basically revises the Nearest Neighbor search to reduce the matching time. In particular, both leaf shape and leaf arrangement can be sketched in the query for better accuracy and efficiency. In the experiment, we compare our proposed method with other methods including Centroid Contour Distance(CCD), Fourier Descriptor, Curvature Scale Space Descriptor(CSSD), Moment Invariants, and MPP. Experimental results on one thousand leaf images show that our approach achieves a better performance than other methods.

RLDB: Robust Local Difference Binary Descriptor with Integrated Learning-based Optimization

  • Sun, Huitao;Li, Muguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4429-4447
    • /
    • 2018
  • Local binary descriptors are well-suited for many real-time and/or large-scale computer vision applications, while their low computational complexity is usually accompanied by the limitation of performance. In this paper, we propose a new optimization framework, RLDB (Robust-LDB), to improve a typical region-based binary descriptor LDB (local difference binary) and maintain its computational simplicity. RLDB extends the multi-feature strategy of LDB and applies a more complete region-comparing configuration. A cascade bit selection method is utilized to select the more representative patterns from massive comparison pairs and an online learning strategy further optimizes descriptor for each specific patch separately. They both incorporate LDP (linear discriminant projections) principle to jointly guarantee the robustness and distinctiveness of the features from various scales. Experimental results demonstrate that this integrated learning framework significantly enhances LDB. The improved descriptor achieves a performance comparable to floating-point descriptors on many benchmarks and retains a high computing speed similar to most binary descriptors, which better satisfies the demands of applications.

Image Retrieval Using Spatial Color Correlation and Texture Characteristics Based on Local Fourier Transform (색상의 공간적인 상관관계와 국부적인 푸리에 변환에 기반한 질감 특성을 이용한 영상 검색)

  • Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, we propose a technique for retrieving images using spatial color correlation and texture characteristics based on local fourier transform. In order to retrieve images, two new descriptors are proposed. One is a color descriptor which represents spatial color correlation. The other is a descriptor combining the proposed color descriptor with texture descriptor. Since most of existing color descriptors including color correlogram which represent spatial color correlation considered just color distribution between neighborhood pixels, the structural information of neighborhood pixels is not considered. Therefore, a novel color descriptor which simultaneously represents spatial color distribution and structural information is proposed. The proposed color descriptor represents color distribution of Min-Max color pairs calculating color distance between center pixel and neighborhood pixels in a block with 3x3 size. Also, the structural information which indicates directional difference between minimum color and maximum color is simultaneously considered. Then new color descriptor(min-max color correlation descriptor, MMCCD) containing mean and variance values of each directional difference is generated. While the proposed color descriptor includes by far smaller feature vector over color correlogram, the proposed color descriptor improves 2.5 % ${\sim}$ 13.21% precision rate, compared with color correlogram. In addition, we propose a another descriptor which combines the proposed color descriptor and texture characteristics based on local fourier transform. The combined method reduces size of feature vector as well as shows improved results over existing methods.

Image Feature Point Selection Method Using Nearest Neighbor Distance Ratio Matching (최인접 거리 비율 정합을 이용한 영상 특징점 선택 방법)

  • Lee, Jun-Woo;Jeong, Jea-Hyup;Kang, Jong-Wook;Na, Sang-Il;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.124-130
    • /
    • 2012
  • In this paper, we propose a feature point selection method for MPEG CDVS CE-7 which is processing on International Standard task. Among a large number of extracted feature points, more important feature points which is used in image matching should be selected for the compactness of image descriptor. The proposed method is that remove the feature point in the extraction phase which is filtered by nearest neighbor distance ratio matching in the matching phase. We can avoid the waste of the feature point and employ additional feature points by the proposed method. The experimental results show that our proposed method can obtain true positive rate improvement about 2.3% in pair-wise matching test compared with Test Model.

Image Retrieval Using a Composite of MPEG-7 Visual Descriptors (MPEG-7 디스크립터들의 조합을 이용한 영상 검색)

  • 강희범;원치선
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2003
  • In this paper, to improve the retrieval Performance, an efficient combination of the MPEG-7 visual descriptors, such as the edge histogram descriptor (EHD), the color layout descriptor (CLD), and the homogeneous texture descriptor (HTD), is proposed in the framework of the relevance feedback approach. The EHD represents spatial distribution of edges in local image regions and it is considered as an important feature to represent the content of the image. The CLD specifies spatial distribution of colors and is widely used in image retrieval due to its simplicity and fast operation speed. The HTD describes precise statistical distribution of the image texture. Both the feature vector for the query image and the weighting factors among the combined descriptors are adaptively determined during the relevance feedback. Experimental results show that the proposed method improves the retrieval performance significantly tot natural images.

Texture Descriptor for Texture-Based Image Retrieval and Its Application in Computer-Aided Diagnosis System (질감 기반 이미지 검색을 위한 질감 서술자 및 컴퓨터 조력 진단 시스템의 적용)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.34-43
    • /
    • 2010
  • Texture information plays an important role in object recognition and classification. To perform an accurate classification, the texture feature used in the classification must be highly discriminative. This paper presents a novel texture descriptor for texture-based image retrieval and its application in Computer-Aided Diagnosis (CAD) system for Emphysema classification. The texture descriptor is based on the combination of local surrounding neighborhood difference and centralized neighborhood difference and is named as Combined Neighborhood Difference (CND). The local differences of surrounding neighborhood difference and centralized neighborhood difference between pixels are compared and converted into binary codewords. Then binomial factor is assigned to the codewords in order to convert them into high discriminative unique values. The distribution of these unique values is computed and used as the texture feature vectors. The texture classification accuracies using Outex and Brodatz dataset show that CND achieves an average of 92.5%, whereas LBP, LND and Gabor filter achieve 89.3%, 90.7% and 83.6%, respectively. The implementations of CND in the computer-aided diagnosis of Emphysema is also presented in this paper.

Similar Image Retrieval using Color Histogram and Edge Histogram Descriptor (컬러 히스토그램과 에지 히스토그램 디스크립터를 이용한 영상 검색 기법)

  • Jo, Min-Hyuk;Lee, Sang-Geol;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.332-335
    • /
    • 2013
  • In this paper, we propose an image retrieval method using an EHD (Edge Histogram Descriptor) of MPEG-7 and the color histogram. The EHD algorithm can be used to collect the gradient of edge distribution and to find a similar image. However, if you only search the edge gradient without considering the image color, the color shows a weakness. In order to overcome this problem, we use the color histogram and extract the feature to determine whether a similar image. The proposed method shows that the weakness of existing EHD can be overcome by using the color histogram.

  • PDF

A Study on the Automatic Inspection System using Invariant Moments Algorithm with the Change of Size and Rotation (크기와 회전 변화에 불변 모멘트 알고리즘을 이용한 자동 검사 시스템에 관한 연구)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.37-43
    • /
    • 2004
  • The purpose of this study is to develop a practical image inspection system that could recognize it correctly, endowing flexibility to the productive field, although the same object for work will be changed in the size and rotated. In this experiment, it selected a fighter, rotating the direction from $30^{\circ}$ to $45^{\circ}$ simultaneously while changing the size from 1/4 to 1/16, as an object inspection without using another hardware for exclusive image processing. The invariant moments, Hu has suggested, was used as feature vector moment descriptor. As a result of the experiment, the image inspection system developed from this research was operated in real-time regardless of the chance of size and rotation for the object inspection, and it maintained the correspondent rates steadily above from 94% to 96%. Accordingly, it is considered as the flexibility can be considerably endowed to the factory automation when the image inspection system developed from this research is applied to the productive field.

Image Retrieval Method Using Color Descriptor (색상 정보를 이용한 영상 검색 기법)

  • Cho, Jae-Hoon;Lee, Sang-Ho;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Recently, as the multimedia processing application increases rapidly by going on increasing multimedia data, the efficient retrieval method of image information is required in many fields of application and becoming the matter of major concern. Furthermore, in the last few years rapid improvements in hardware technology have made it possible to process, store and retrieve huge amounts of data in a multimedia format. As a result, Content-Based Image Retrieval (CBIR) has been receiving widespread interest during the last decade. This paper propose the content-based retrieval system as a method for performing image retrieval through the effective feature analysis of the object of significant meaning by using YCbCr channel merging on the basis of the characteristics of man's visual system.

  • PDF

Shape Descriptor for 3D Foot Pose Estimation (3차원 발 자세 추정을 위한 새로운 형상 기술자)

  • Song, Ho-Geun;Kang, Ki-Hyun;Jung, Da-Woon;Yoon, Yong-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.469-478
    • /
    • 2010
  • This paper proposes the effective shape descriptor for 3D foot pose estimation. To reduce processing time, silhouette-based foot image database is built and meta information which involves the 3D pose of the foot is appended to the database. And we proposed a modified Centroid Contour Distance whose size of the feature space is small and performance of pose estimation is better than the others. In order to analyze performance of the descriptor, we evaluate time and spatial complexity with retrieval accuracy, and then compare with the previous methods. Experimental results show that the proposed descriptor is more effective than the previous methods on feature extraction time and pose estimation accuracy.