• Title/Summary/Keyword: image feature descriptor

Search Result 140, Processing Time 0.031 seconds

A Content-Based Image Retrieval Technique Using the Shape and Color Features of Objects (객체의 모양과 색상특징을 이용한 내용기반 영상검색 기법)

  • 박종현;박순영;오일환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1902-1911
    • /
    • 1999
  • In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.

  • PDF

Image recommendation algorithm based on profile using user preference and visual descriptor (사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘)

  • Kim, Deok-Hwan;Yang, Jun-Sik;Cho, Won-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.463-474
    • /
    • 2008
  • The advancement of information technology and the popularization of Internet has explosively increased the amount of multimedia contents. Therefore, the requirement of multimedia recommendation to satisfy a user's needs increases fastly. Up to now, CF is used to recommend general items and multimedia contents. However, general CF doesn't reflect visual characteristics of image contents so that it can't be adaptable to image recommendation. Besides, it has limitations in new item recommendation, the sparsity problem, and dynamic change of user preference. In this paper, we present new image recommendation method FBCF (Feature Based Collaborative Filtering) to resolve such problems. FBCF builds new user profile by clustering visual features in terms of user preference, and reflects user's current preference to recommendation by using preference feedback. Experimental result using real mobile images demonstrate that FBCF outperforms conventional CF by 400% in terms of recommendation ratio.

Edge-based spatial descriptor for content-based Image retrieval (내용 기반 영상 검색을 위한 에지 기반의 공간 기술자)

  • Kim, Nac-Woo;Kim, Tae-Yong;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-10
    • /
    • 2005
  • Content-based image retrieval systems are being actively investigated owing to their ability to retrieve images based on the actual visual content rather than by manually associated textual descriptions. In this paper, we propose a novel approach for image retrieval based on edge structural features using edge correlogram and color coherence vector. After color vector angle is applied in the pre-processing stage, an image is divided into two image parts (high frequency image and low frequency image). In low frequency image, the global color distribution of smooth pixels is extracted by color coherence vector, thereby incorporating spatial information into the proposed color descriptor. Meanwhile, in high frequency image, the distribution of the gray pairs at an edge is extracted by edge correlogram. Since the proposed algorithm includes the spatial and edge information between colors, it can robustly reduce the effect of the significant change in appearance and shape in image analysis. The proposed method provides a simple and flexible description for the image with complex scene in terms of structural features of the image contents. Experimental evidence suggests that our algorithm outperforms the recently histogram refinement methods for image indexing and retrieval. To index the multidimensional feature vectors, we use R*-tree structure.

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data (관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상)

  • Kim, Minwoo;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.

Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality (효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법)

  • Lee, Jin-Young;Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.49-55
    • /
    • 2019
  • This paper presents a marker image evaluation method based on analysis of object distribution in images and classification of images with repetitive patterns for effective marker-based augmented reality (AR) system development. We measure the variance of feature point coordinates to distinguish marker images that are vulnerable to occlusion, since object distribution affects object tracking performance according to partial occlusion in the images. Moreover, we propose a method to classify images suitable for object recognition and tracking based on the fact that the distributions of descriptor vectors among general images and repetitive-pattern images are significantly different. Comprehensive experiments for marker images confirm that the proposed marker image evaluation method distinguishes images vulnerable to occlusion and repetitive-pattern images very well. Furthermore, we suggest that scale-invariant feature transform (SIFT) is superior to speeded up robust features (SURF) in terms of object tracking in marker images. The proposed method provides users with suitability information for various images, and it helps AR systems to be realized more effectively.

Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection (기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적)

  • Jeong, Joon-Yong;Jung, Byung-Man;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.812-820
    • /
    • 2012
  • In this paper, multiple pedestrians tracking system using Histogram of Oriented Gradient and occlusion detection is proposed. The proposed system is applicable to Intelligent Surveillance System. First, we detect pedestrian in a image sequence using pedestrian's feature. To get pedestrian's feature, we make block-histogram using gradient's direction histogram based on HOG(Histogram of Oriented Gradient), after that a pedestrian region is classified by using Linear-SVM(Support Vector Machine) training. Next, moving objects are tracked by using position information of the classified pedestrians. And we create motion trajectory descriptor which is used for content based event retrieval. The experimental results show that the proposed method is more fast, accurate and effective than conventional methods.

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

Middle Ear Disease Automatic Decision Scheme using HoG Descriptor (HoG 기술자를 이용한 중이염 자동 판별 방법)

  • Jung, Na-ra;Song, Jae-wook;Choi, Ho-Hyoung;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.621-629
    • /
    • 2016
  • This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

Gabor and Wavelet Texture Descriptors in Representing Textures in Arbitrary Shaped Regions (임의의 영역 안에 텍스처 표현을 위한 Wavelet및 Gabor 텍스처 기술자와 성능평가)

  • Sim Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.287-295
    • /
    • 2006
  • This paper compares two different approaches based on wavelet and Gabor decomposition towards representing the texture of an arbitrary region. The Gabor-domain mean and standard deviation combination is considered to be best in representing the texture of rectangular regions. However, texture representation of arbitrary regions would enable generalized object-based image retrieval and other applications in the future. In this study, we have found that the wavelet features perform better than the Gabor features in representing the texture of arbitrary regions. Particularly, the wavelet-domain standard deviation and entropy combination results in the best retrieval accuracy. Based on our experiment with texture image sets, we present and compare tile retrieval accuracy of multiple wavelet and Gabor feature combinations.

  • PDF