• Title/Summary/Keyword: image feature descriptor

Search Result 140, Processing Time 0.044 seconds

The characteristics of section applied image inspection system to the moment values are invariant with respect to variable object size and rotation (단면의 성질을 적용한 크기와 회전 변화에 불변인 영상 검사 시스템)

  • 이용중;김태원;김기대;류재엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.131-136
    • /
    • 2001
  • The purpose of this paper is to develop image inspection system endows an automatic operating and measuring that the moment values are invariant with respect to variable object size and rotation. In this paper, using these moment feature vector with Hu s 7 invariant moment is also given. The characteristics of section which is applied in the mechanics used moment descriptor of invariant moment detection algorithm for image inspection system. Corresponding rates between 94% and 96% have been achived for all object tested.

  • PDF

An Implementation of Image Inspection System for Invariants Moment (불변 모멘트 영상 검사 시스템 구현)

  • Lee, Yong-Joong;Kim, Hak-Bum;Yun, Jin-Su;Kim, Hyoung-Jo;Lee, Yang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2449-2451
    • /
    • 2001
  • The purpose of this paper is to develop image inspection system endows an automatic operating and measuring that the moment values are invariant with respect to variable object size and rotation. In this paper, using these moment feature vector with Hu's 7 invariant moment is also given. The characteristics of section which is applied in the mechanics used moment descriptor of invariant moment detection algorithm for image inspection system. Corresponding rates between 94% and 96% have archived for all object tested.

  • PDF

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

The character classifier using circular mask dilation method (원형 마스크 팽창법에 의한 무자인식)

  • 박영석;최철용
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.913-916
    • /
    • 1998
  • In this paper, to provide the robustness of character recognition, we propose a recognition method using the dilated boundary curve feature which has the invariance characteristics for the shift, scale, and rotation changes of character pattern. And its some characteristics and effectieness are evaluated through the experiments for both the english alphabets and the numeral digits. The feature vector is represented by the fourier descriptor for a boundary curve of the dilated character pattern which is generated by the circular mask dilation method, and is used for a nearest neighbort classifier(NNC) or a nearest neighbor mean classifier(NNMC). These the processing time and the recognition rate, and take also the robustness of recognition for both some internal noise and partial corruption of an image pattern.

  • PDF

Real Object Recognition Based Mobile Augmented Reality Game (현실 객체 인식 기반 모바일 증강현실 게임)

  • Lee, Dong-Chun;Lee, Hun-Joo
    • Journal of Korea Game Society
    • /
    • v.17 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • This paper describes the general process of making augmented reality game for real objects without markers. In this paper, point cloud data created by using slam technology is edited using a separate editing tool to optimize performance in mobile environment. Also, in the game execution stage, a lot of load is generated due to the extraction of feature points and the matching of descriptors. In order to reduce this, optical flow is used to track the matched feature points in the previous input image.

Study on the panorama image processing using the SURF feature detector and technicians. (SURF 특징 검출기와 기술자를 이용한 파노라마 이미지 처리에 관한 연구)

  • Kim, Nam-woo;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.699-702
    • /
    • 2015
  • 다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. 본 논문에서는 두 영상 사이 또는 하나의 영상과 여러 영상 사이에 대응되는 매칭을 계산하여 파노라마영상을 생성하는 처리 방법을 구현하고 기술하였다.

  • PDF

A Study on the 3D Shape Reconstruction Algorithm of an Indoor Environment Using Active Stereo Vision (능동 스테레오 비젼을 이용한 실내환경의 3차원 형상 재구성 알고리즘)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • In this paper, we propose the 3D shape reconstruction method that combine the mosaic method and the active stereo matching using the laser beam. The active stereo matching method detects the position information of the irradiated laser beam on object by analyzing the color and brightness variation of left and right image, and acquires the depth information in epipolar line. The mosaic method extracts feature point of image by using harris comer detection and matches the same keypoint between the sequence of images using the keypoint descriptor index method and infers correlation between the sequence of images. The depth information of the sequence image was calculated by the active stereo matching and the mosaic method. The merged depth information was reconstructed to the 3D shape information by wrapping and blending with image color and texture. The proposed reconstruction method could acquire strong the 3D distance information, and overcome constraint of place and distance etc, by using laser slit beam and stereo camera.

  • PDF

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.