Quantification of carbon absorption and understanding the human induced land use changes forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by land use changes through remote sensing technology. However, it focused on past carbon absorption changes. So prediction of future carbon absorption changes is insufficient. This study simulated land use change using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model and predicted future changes in carbon absorption considering climate change scenarios 4.5 and 8.5 of the Representative Concentration Pathways (RCP). Results of this study, in the RCP 4.5 scenarios there predicted to be loss of 7.92% of carbon absorption, but in the RCP 8.5 scenarios was 13.02%. Therefore, the approach used in this study is expected to enable exploration of future carbon absorption change considering other climate change scenarios.
Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.
Journal of the Korean Society of Environmental Restoration Technology
/
v.22
no.4
/
pp.1-14
/
2019
The 1st Forest Health Management survey was conducted to examine the health of the forests in Korea. However, in order to understand the health of the forests, which account for 63.7% of the total land area in South Korea, it is necessary to comprehensively spatialize the results of the survey beyond the sampling points. In this regard, out of the sample points of the 1st Forest Health Management survey in Gyeongbuk area, 78 spots were selected. For these spots, the species diversity index was selected from the survey sections, and the spatial interpolation method was applied. Inverse distance weighted (IDW), Ordinary Kriging and Ordinary Cokriging were applied as spatial interpolation methods. Ordinary Cokriging was performed by selecting vegetation indices which are highly correlated with species diversity index as a secondary variable. The vegetation indices - Normalized Differential Vegetation Index(NDVI), Leaf Area Index(LAI), Sample Ratio(SR) and Soil Adjusted Vegetation Index(SAVI) - were extracted from Landsat 8 OLI. Verification was performed by the spatial interpolation method with Mean Error(ME) and Root Mean Square Error(RMSE). As a result, Ordinary Cokriging using SR showed the most accurate result with ME value of 0.0000218 and RMSE value of 0.63983. Ordinary Cokriging using SR was proven to be more accurate than Ordinary Kriging, IDW, using one variable. This indicates that the spatial interpolation method using the vegetation indices is more suitable for spatialization of the biodiversity index sample points of 1st Forest Health Management survey.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.5
/
pp.530-537
/
2019
In this paper we propose a novel approach to representation of the 3D reconstruction problem by employing a concept of system function that is defined as the ratio of the output to the input signal. Akin to determination of system function (or system response), this paper determines system function by choosing (or defining) appropriate input and output signals. In other words, the 3D reconstruction using structured circular light patterns is reformulated as determination of system function from input and output signals. This paper introduces two algorithms for the reconstruction. The one defines the input and output signals as projected circular light patterns and the images overlaid with the patterns and captured by camera, respectively. The other one defines input and output signals as 3D coordinates of the object surface and the image captured by camera. The first one leads to the problem as identifying the system function and the second one leads to the problem as estimation of an input signal employing concept of modulation-demodulation theory. This paper substantiate the proposed approach by providing experimental results.
Kim, Tae-Hoon;Lee, Jai-Ho;Kim, Do-Seon;Lee, Suk-Bae
Journal of the Society of Disaster Information
/
v.17
no.3
/
pp.608-616
/
2021
Purpose: Safety inspections by existing personnel have been limited in evaluation and data securing due to concerns about the safety of technicians or difficulty in accessing them, and are becoming a bigger problem as the number of maintenance targets increases due to the aging of facilities. As drone technology develops, it is possible to ensure the safety of personnel, secure visual data, and diagnose quickly, and use it is increasing as safety inspection of facilities by drones was introduced recently. In order to further enhance utilization, it is considered necessary to base a consideration standard for facility appearance investigation by drones, and in this paper, research was conducted on dams. Method: To calculate the quality, existing domestic safety inspection and drone-related consideration standards were investigated, and procedures related to safety inspection using drones were compared and analyzed to review work procedures and construction types. In addition, empirical data were collected through drone photography and elevation image production for the actual dam. Result: Work types for safety inspection of facilities using drones were derived, and empirical survey results were collected for two dams according to work types. The existing guidelines were applied for the adjustment ratios for each structural type and standard of the facility, and if a meteorological reference point survey was necessary, the unmanned aerial vehicle survey of the construction work standard was applied. Conclusion: The finer the GSD in appearance investigation using drones, the greater the number of photographs taken, and the concept of adjustment cost was applied as a correction to calculate the consideration standard. In addition, it was found that the problem of maximum GSD indicating limitations should be considered in order to maintain the safe distance.
Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.
Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Song, Ahram;Lee, Won Hee
Korean Journal of Remote Sensing
/
v.38
no.6_4
/
pp.1879-1887
/
2022
In this study, a method of estimating the velocity and altitude of aircrafts photographed in a KOMPSAT-3 satellite was proposed. In the proposed method, parallax effect, which is a time offset between bands due to the photographing method of the KOMPSAT-3 satellite, the structure of the sensor, and the movement of the satellite's orbit, was calculated, and in this process, trucks running on the highway were used. In addition, the actual direction and the direction by parallax effect of the aircraft were calculated using the coordinates of the aircraft in the image, and the attitude information of the KOMPSAT-3 satellite was calculated using metadata to estimate the velocity and altitude of the aircraft. The estimated value through the proposed method was compared with the actual value, automatic dependent surveillance-broadcast (ADS-B), and the error rate was calculated here. As a result, it was confirmed that the velocity and altitude error rate of large aircraft (I1, I3, S2) were lower than that of light aircraft (I2, S2), and the estimated velocity and altitude were relatively high in large aircraft using the proposed method.
Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.6
/
pp.87-96
/
2022
The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.
Kim, Gwang Soo;Choi, Jae Yun;Nam, Su Han;Kim, Young Dod;Kwon, Jae Hyun
Journal of Korea Water Resources Association
/
v.56
no.6
/
pp.373-380
/
2023
Due to abnormal climate phenomena and climate change in Korea, overgrowth of algae in rivers and reservoirs occurs frequently. Algae in rivers are classified into green algae, blue-green algae, diatom, and other types, and some species of blue-green algae cause problems due to odor and the discharge of toxic substances. In Korea, an algae alert system is in place, and it is issued based on the number of harmful blue-green algae cells. Thus, measuring harmful blue-green algal blooms is very important, and currently, the analysis method of algae involves taking field samples and determining the cell count of green algae, blue-green algae, and diatoms through algal microscopy, which takes a lot of time. Recently, the analysis of algae concentration through Phycocyanin, an alternative indicator for the number of harmful algae cells, has been conducted through remote sensing. However, research on the analysis of the number of blue-green algae cells is currently insufficient. In this study, we water samples for algal analyses were collected from river and counted the number of blue-green algae cells using algae microscopy. We also obtained the Phycocyanin concentration using an optical sensor and acquired algae spectra through a hyperspectral sensor. Based on this, we calculated the equation for estimating blue-green algae cell counts and estimated the number of blue-green algae cells.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.246-246
/
2021
본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.