• Title/Summary/Keyword: image clustering

Search Result 601, Processing Time 0.024 seconds

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Face Detection for Automatic Avatar Creation by using Deformable Template and GA (Deformable Template과 GA를 이용한 얼굴 인식 및 아바타 자동 생성)

  • Park Tae-Young;Kwon Min-Su;Kang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.110-115
    • /
    • 2005
  • This paper proposes the method to detect contours of a face, eyes and a mouth in a color image for making an avatar automatically. First, we use the HSI color model to exclude the effect of various light condition, and we find skin regions in an input image by using the skin color is defined on HS-plane. And then, we use deformable templates and Genetic Algorithm(GA) to detect contours of a face, eyes and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those can represent various shape of a face, eyes and a mouth. And GA is very useful search procedure based on the mechanics of natural selection and natural genetics. Second, an avatar is created automatically by using contours and Fuzzy C-means clustering(FCM). FCM is used to reduce the number of face color As a result, we could create avatars like handmade caricatures which can represent the user's identity, differing from ones generated by the existing methods.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Adaptive Counting Line Detection for Traffic Analysis in CCTV Videos (CCTV영상 내 교통량 분석을 위한 적응적 계수선 검출 방법)

  • Jung, Hyeonseok;Lim, Seokjae;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • Recently, with the rapid development of image recognition technology, the demand for object analysis in road CCTV videos is increasing. In this paper, we propose a method that can adaptively find the counting line for traffic analysis in road CCTV videos. First, vehicles on the road are detected, and the corresponding positions of the detected vehicles are modeled as the two-dimensional pointwise Gaussian map. The paths of vehicles are estimated by accumulating pointwise Gaussian maps on successive video frames. Then, we apply clustering and linear regression to the accumulated Gaussian map to find the principal direction of the road, which is highly relevant to the counting line. Experimental results show that the proposed method for detecting the counting line is effective in various situations.

Impact of Difference in Korean Wave Awareness among Chinese Women on Quality Perception and Purchasing Behavior of Korean Cosmetic Products (중국여성의 한류 인지도 차이가 한국 화장품에 대한 품질인식과 구매행동에 미치는 영향)

  • Lee, Jeong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5097-5104
    • /
    • 2013
  • To derive implication for marketing strategy for Korean cosmetic products in China, an analysis was conducted on the difference in quality perception and purchase behavior between two groups of Chinese women classified by their awareness of Korean Wave. Analytical methods including k-means clustering method, independent samples t-test, factor analysis were applied on the survey results of Chinese women residing in Guangzhou city. The positive impact of Korean Wave on quality perception and brand image is much stronger for higher awareness group, compared against for lower awareness group, that leads to higher product satisfaction and willingness to recommend purchases. Thus, marketing strategies need to be adjusted based on the difference in customers awareness of Korean Wave. However, the low price is the primary inducement for purchases for both groups, increased efforts to enhance brand image and product quality as premium products is strongly required, together with the utilization of Koran Wave.

Improvement of TAOS data process

  • Lee, Dong-Wook;Byun, Yong-Ik;Chang, Seo-Won;Kim, Dae-Won;TAOS Team, TAOS Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.129.1-129.1
    • /
    • 2011
  • We have applied an advanced multi-aperture indexing photometry and sophisticated de-trending method to existing Taiwanese-American Occultation Survey (TAOS) data sets. TAOS, a wide-field ($3^{\circ}{\times}3^{\circ}$) and rapid photometry (5Hz) survey, is designed to detect small objects in the Kuiper Belt. Since TAOS has fast and multiple exposures per zipper mode image, point spread function (PSF) varies in a given image. Selecting appropriate aperture among various size apertures allows us to reflect these variations in each light curve. The survey data turned out to contain various trends such as telescope vibration, CCD noise, and unstable local weather. We select multiple sets of stars using a hierarchical clustering algorithm in such a way that the light curves in each cluster show strong correlations between them. We then determine a primary trend (PT) per cluster using a weighted sum of the normalized light curves, and we use the constructed PTs to remove trends in individual light curves. After removing the trend, we can get each synthetic light curve of star that has much higher signal-to-noise ratio. We compare the efficiency of the synthetic light curves with the efficiency of light curves made by previous existing photometry pipelines. Our photometric method is able to restore subtle brightness variation that tends to be missed in conventional aperture photometric methods, and can be applied to other wide-field surveys suffering from PSF variations and trends. We are developing an analysis package for the next generation TAOS survey (TAOS II) based on the current experiments.

  • PDF

Classifier Integration Model for Image Classification (영상 분류를 위한 분류기 통합모델)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • An advanced form of the Partitioned Feature-based Classifier with Expertise Table(PFC-ET) is proposed in this paper. As is the case with the PFC-ET, the proposed classifier model, called Classifier Integration Model(CIM), does not use the entire feature vectors extracted from the original data in a concatenated form to classify each datum, but rather uses groups of features related to each feature vector separately. The proposed CIM utilizes a proportion of selected cluster members instead of the expertise table in PFC-ET to minimize the error in confusion table. The proposed CIM is applied to the classification problem on two data sets, Caltech data set and collected terrain data sets. When compared with PFC model and PFC-ET model. the proposed CIM shows improvements in terms of classification accuracy and post processing efforts.

Region-Based Moving Object Segmentation for Video Monitoring System (비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할)

  • 이경미;김종배;이창우;김항준
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2003
  • This paper presents an efficient region-based motion segmentation method for segmenting of moving objects in a traffic scene with a focus on a Video Monitoring System (VMS). The presented method consists of two phases: motion detection and motion segmentation. Using the adaptive thresholding technique, the differences between two consecutive frames are analyzed to detect the movements of objects in a scene. To segment the detected regions into meaningful objects which have the similar intensity and motion information, the regions are initially segmented using a k-means clustering algorithm and then, the neighboring regions with the similar motion information are merged. Since we deal with not the whole image, but the detected regions in the segmentation phase, the computational cost is reduced dramatically. Experimental results demonstrate robustness in the occlusions among multiple moving objects and the change in environmental conditions as well.

Corrupted Region Restoration based on 2D Tensor Voting (2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할)

  • Park, Jong-Hyun;Toan, Nguyen Dinh;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.205-210
    • /
    • 2008
  • A new approach is proposed for restoration of corrupted regions and segmentation in natural text images. The challenge is to fill in the corrupted regions on the basis of color feature analysis by second order symmetric stick tensor. It is show how feature analysis can benefit from analyzing features using tensor voting with chromatic and achromatic components. The proposed method is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image into chromatic and achromatic components to analyze images. Secondly, selected feature vectors are analyzed by second-order symmetric stick tensor. And tensors are redefined by voting information with neighbor voters, while restore the corrupted regions. Lastly, mode estimation and segmentation are performed by adaptive mean shift and separated clustering method respectively. This approach is automatically done, thereby allowing to easily fill-in corrupted regions containing completely different structures and surrounding backgrounds. Applications of proposed method include the restoration of damaged text images; removal of superimposed noises or streaks. We so can see that proposed approach is efficient and robust in terms of restoring and segmenting text images corrupted.

Semantic Object Detection based on LiDAR Distance-based Clustering Techniques for Lightweight Embedded Processors (경량형 임베디드 프로세서를 위한 라이다 거리 기반 클러스터링 기법을 활용한 의미론적 물체 인식)

  • Jung, Dongkyu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1453-1461
    • /
    • 2022
  • The accuracy of peripheral object recognition algorithms using 3D data sensors such as LiDAR in autonomous vehicles has been increasing through many studies, but this requires high performance hardware and complex structures. This object recognition algorithm acts as a large load on the main processor of an autonomous vehicle that requires performing and managing many processors while driving. To reduce this load and simultaneously exploit the advantages of 3D sensor data, we propose 2D data-based recognition using the ROI generated by extracting physical properties from 3D sensor data. In the environment where the brightness value was reduced by 50% in the basic image, it showed 5.3% higher accuracy and 28.57% lower performance time than the existing 2D-based model. Instead of having a 2.46 percent lower accuracy than the 3D-based model in the base image, it has a 6.25 percent reduction in performance time.