• 제목/요약/키워드: image binarization

검색결과 283건 처리시간 0.02초

Kapur 방법과 형태학적 특징을 이용한 자궁경부암 세포 추출 및 인식 (Detection and Recognition of Uterine Cervical Carcinoma Cells in Pap Smear Using Kapur Method and Morphological Features)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.1992-1998
    • /
    • 2007
  • 자궁 경부 세포진 영상의 효과적인 세포핵 영역 추출과 인식 및 분류를 위해서는 세포진 영상의 배경 그리고 세포핵과 세포질 영역의 정확한 구분이 중요하다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵 영역과 배경을 효과적으로 분할하기 위 해 Median 필터를 적용하여 전체적인 영상의 명암값을 보정한 후, Gaussian 필터를 적용하여 그레이 영상에서 존재하는 잡음을 제거한다. Kapur 방법을 통해 배경과 세포의 엔트로피 누적 확률을 이용하여 영상을 이진화 한다. 자궁 경부진 영상에서는 군집화된 세포 영 역 이 빈번하게 나타난다. 군집화가 심화된 세포영역에서는 그 영역의 평균 명암도 값을 이용하여 세밀하게 영역을 재분할 한다. 그런 후, 미세잡음을 제거하기 위해 $3{\times}3$ 마스크를 적용하여 미세한 잡음을 제거 한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 분할된 영역에서 세포들의 후보영역을 추출한다. 추출된 세포영역은 크기, 면적 비율, 핵 외곽의 방향성 정보를 이용하여 정상 세포와 암세포를 인식 및 분류한다. 실험 결과에서는 제안된 방법의 성능이 전문의와 소견과 비교적 근접한 것을 보여준다.

ART-1과 PCA 알고리즘을 이용한 주민등록증 인식 (Recognition of Resident Registration Cards Using ART-1 and PCA Algorithm)

  • 박성대;우영운;김광백
    • 한국정보통신학회논문지
    • /
    • 제11권9호
    • /
    • pp.1786-1792
    • /
    • 2007
  • 본 논문에서는 ART-1 알고리즘을 이용한 개별코드 인식과 PCA 알고리즘을 적용한 주민등록증 인증방법을 제안한다. 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 Sobel 마스크와 median 필터를 적용하였다. 잡음이 제거 된 영상에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 추출하고 반복 이진화를 적용하여 이진 영상을 획득한 후, 이진화 과정에서 손실된 개별 코드의 영역을 복원하기 위해, 수직 스미어링을 적용한다. 영역이 복원된 영상에서 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출하고 얼굴인증을 위해 주민등록증의 형태학적 특징과 얼굴후보 영역의 눈과 입의 위치 정보를 이용하여 얼굴영역을 추출한다. 추출된 주민등록번호와 발행일은 ART-1 알고리즘을 적용하여 주민등록 번호와 발행일을 인식하고 PCA 알고리즘을 적용하여 주민등록증 사진의 얼굴 영역을 인증한다. 제안된 주민등록증 인식 방법의 성능평가를 위해 원본 주민등록증 영상 25개를 대상으로 실험한 결과, 325개의 주민등록번호와 167개의 발행일 중에서 각각 323개와 166개가 인식되었다. 그리고 사진과 얼굴부분을 위조한 주민등록증 25에 대해 얼굴 인증을 실험한 결과, 얼굴 인증에 있어서 효율적인 것을 확인하였다.

관절 기반의 모델을 활용한 강인한 손 영역 추출 (Robust Hand Region Extraction Using a Joint-based Model)

  • 장석우;김설호;김계영
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.525-531
    • /
    • 2019
  • 인간과 컴퓨터 사이의 보다 자연스러운 상호적인 인터페이스를 효과적으로 구현하기 위해서 사람의 제스처를 활용하려는 노력이 최근 들어 지속적으로 시도되고 있다. 본 논문에서는 연속적으로 입력되는 3차원의 깊이 영상을 받아들여서 손 모델을 정의하고, 정의된 손 모델을 기반으로 사람의 손 영역을 강인하게 추출하는 알고리즘을 제시한다. 본 논문에서 제시된 알고리즘에서는 먼저 21개의 관절을 사용하여 손 모델을 정의한다. 본 논문에서 정의한 손 모델은 6개의 손바닥 관절을 포함하는 손바닥 모델과 15개의 손가락 관절을 포함하는 손가락 모델로 구성된다. 그런 다음, 입력되는 3차원의 깊이 영상을 적응적으로 이진화함으로써, 배경과 같은 비관심 영역들은 제외하고, 관심 영역인 사람의 손 영역만을 정확하게 추출한다. 실험 결과에서는 제시된 알고리즘이 연속적으로 입력되는 깊이 영상으로부터 배경과 같은 영역들은 제외하고 사람의 손 영역만을 기존의 알고리즘에 비해 약 2.4% 보다 강인하게 검출한다는 것을 보여준다. 본 논문에서 제안된 손 영역 추출 알고리즘은 제스처 인식, 가상현실 구현, 3차원 운동 게임, 수화 인식 등과 같은 컴퓨터 비전 및 영상 처리와 관련된 여러 가지의 실제적인 분야에서 유용하게 활용될 것으로 기대된다.

저전력 특징추출 알고리즘의 구현을 위한 블록 유형 분류 기반 낮은 복잡도를 갖는 영상 이진화 (Low Complexity Image Thresholding Based on Block Type Classification for Implementation of the Low Power Feature Extraction Algorithm)

  • 이주성;안호명;김병철
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.179-185
    • /
    • 2019
  • 본 논문은 저전력 특징추출 알고리즘의 구현을 위한 블록 유형 분류 기반 영상 이진화 방법을 제안한다. 제안하는 방법은 영상 내에서 $64{\times}64$ macro block 크기로 영상을 나누고 각 블록 유형별 threshold 값을 한 번만 연산한 후 그 값을 re-use 하는 기법으로 구현될 수 있다. 알고리즘은 threshold 값이 같은 영상/블록 유형 내에서 최대 9%의 변화율만 발생하는 것을 정량적인 결과를 기반으로 검증했다. 기존 알고리즘은 $512{\times}512$ 이미지 기준으로 macro block을 $64{\times}64$로 나누었을 때 64개의 블록을 위해 threshold 값을 연산해야 하지만 제안하는 방법은 모두 같은 블록 유형이 출력되는 best case의 경우 threshold 연산을 한번만 수행하고, 나머지 63개의 블록에 대해서는 블록 유형 구분 과정만 수행하면 adaptive threshold calculation 연산을 98% 생략할 수 있다. 모든 블록 유형이 발생하는 worst case일 때 threshold calculation 연산은 다섯 번 수행되고, 나머지 59개의 블록에 대해서는 블록 유형 구분 과정만 수행할 수 있으므로 93%의 adaptive threshold calculation 연산을 생략할 수 있다.

이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구 (A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors)

  • 서승환;온승엽;김동현;곽기석;정문경
    • 한국지반신소재학회논문집
    • /
    • 제19권4호
    • /
    • pp.41-50
    • /
    • 2020
  • 콘크리트 구조물의 균열은 장기간 지속 시 철근의 부식을 촉진시키므로 구조적 사용성을 보장하고 열화를 방지하기 위해 정기적인 현장 점검이 필수적이다. 대부분의 시설물 안전점검은 육안 검사에 의존하고 있어 비용과 시간 소모가 심하고 점검자에 따라 결과의 신뢰도 차이가 발생한다. 본 연구에서는 카메라로 촬영된 균열의 이미지 분석을 통해 콘크리트 균열의 폭과 길이를 측정하는 장치로서 안전진단 및 유지관리에 사용할 수 있는 휴대용 측정 장치를 개발하였다. 이 장치는 측정자가 육안으로 발견한 균열을 가까운 거리 (3m) 이내에서 촬영하고 레이저 거리측정으로 단위 픽셀크기를 정확히 산정하여, 본 연구에서 개발한 이미지 처리 알고리즘으로 균열 길이와 폭을 자동으로 산정할 수 있다. 측정결과 실험에 적용한 균열 이미지를 이용하여 3m 거리 이내에서 0.3mm 균열의 길이 측정은 약 10% 오차 범위에서 측정 가능하였다. 균열 폭의 경우 이진화 과정에서 진동 및 Blurring에 의한 주변픽셀을 검출해 과대평가되는 경향을 나타내었으나, 균열 폭 감소함수를 적용하여 효과적으로 보정할 수 있었다.

해상 객체 검출 고속 처리를 위한 영상 전처리 알고리즘 설계와 딥러닝 기반의 통합 시스템 (Design of Video Pre-processing Algorithm for High-speed Processing of Maritime Object Detection System and Deep Learning based Integrated System)

  • 송현학;이효찬;이성주;전호석;임태호
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.117-126
    • /
    • 2020
  • 해상 객체 인식은 자율운항선박(MASS)의 지능형 보조 시스템으로써, 선장이 육안으로 해상 주변의 충돌 위험성이 있는 부유물을 확인하던 정보를 컴퓨터를 통해 자동으로 인식하여 사람이 확인하는 방법과 유사한 정확도로 인지하는 방법을 말한다. 선박 주변의 물체를 인식하는 방법으로 기존에는 레이더나 소나와 같은 장치로부터 수집된 정보를 통해 확인하였지만, 인공지능의 기술이 발달하면서 선박 지능형 CCTV를 통해 운항 항로에 있는 다양한 부유물을 인식하는 것이 가능하다. 하지만, 자율 선박의 다양한 요구사항과 복잡성 때문에 영상 데이터의 처리속도가 느려지게 된다면 원활한 서비스 지원은 물론 안전성도 보장할 수 없게 된다. 이러한 문제를 해결하고자 본 논문에서는 해상 객체를 검출하는 데 있어 영상 데이터의 연산량을 최소화하여 처리속도를 높이기 위한 연구를 진행하였다. 해상 객체 인식의 관심 영역을 확보하기 위해서는 일반적으로 수평선을 찾는데 기존 연구들은 허프 변환 알고리즘을 활용하지만 본 논문에서는 속도를 개선하기 위해 이진화 알고리즘을 최적화하여 실제 객체의 위치와 유사한 영역을 찾는 새로운 방법을 제안한다. 또한, 제안하는 방법의 유용성을 증명하기 위해 딥러닝 CNN을 활용하여 해상 객체 인식 시스템을 구현함으로써 알고리즘의 성능을 평가하였다. 제안하는 알고리즘은 기존 방법의 인식 정확도를 유지하면서 약 4배 이상의 빠른 성능을 얻을 수 있었다.

자연영상에서 교통 표지판의 기울기 보정 및 덱스트 추출 (Skew Compensation and Text Extraction of The Traffic Sign in Natural Scenes)

  • 최규담;김성동;최기호
    • 한국ITS학회 논문지
    • /
    • 제3권2호
    • /
    • pp.19-28
    • /
    • 2004
  • 본 논문은 자연영상에서 얻은 교통표지판의 기울기를 보정하고 텍스트를 추출하는 방법을 제안한다. 본 연구는 명도 이미지를 대상으로 모든 과정이 4단계로 이루어진다. 첫째, 자연 영상에서 에지 검출을 위한 전처리 및 Canny 에지 추출을 수행하며, 둘째, 영상의 기울기를 추출하기 위해 허프 변환에 대한 전처리와 후처리를 한 후, 셋째로 잡음영상과 선을 제거하고 텍스트가 가지고 있는 특징을 이용하여 후보영역 검출을 한다 마지막으로 검출된 텍스트 후보영역 안에서 지역적 이진화를 수행한 후, 불필요한 비텍스트 연결 요소를 추려내기 위해 텍스트와 비텍스트 간의 연결요소에 나타나는 특징 차이를 이용하여 텍스트 추출을 수행한다 100장의 샘플영상을 대상으로 실험한 결과 82.54$\%$ 텍스트 추출률과 79.69$\%$ 추출 정확도를 가짐으로써 기존의 런 길이 평활화 방법이나 퓨리어 변환을 이용한 방법보다 더 정확한 텍스트 추출 향상을 보였다. 또한 기울어진 각도 추출에서도 94.3$\%$의 추출률로 기존의 Hough 변환만을 이용한 방법보다 약 26$\%$의 향상을 보였다. 본 연구는 시각 장애인 보행 보조 시스템이나 무인 자동차 운행에 있어 위치 정보를 제공하는데 활용할수 있을 것이다.

  • PDF

PCA와 LDA을 이용한 차량 번호판 통합 인식에 관한 연구 (A Study on Recognition of Both of PCA and LAD Using Types of Vehicle Plate)

  • 이진기;김현열;이승규;이건화;박영록;안기남;배철수;박영철
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.6-17
    • /
    • 2013
  • 최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.

주변 환경 변화에 적응하는 윤곽선 추출 기반의 자동차 번호판 검출 기법 (A license plate detection method based on contour extraction that adapts to environmental changes)

  • 표성국;이강성;박영수;이상훈
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.31-39
    • /
    • 2018
  • 본 논문에서는 차량 주변 환경의 변화에서도 번호판 영역을 검출하는 연구를 하였다. 그래서 주변 환경 변화에 적응하는 윤곽선 추출 기반의 자동차 번호판 검출 방법을 제안하였다 제안하는 방법은 윤곽선 추출 과정에서 불필요한 잡음 부분을 제거하기 위해 DoG(Difference of Gaussian)을 이용하여 윤곽선을 추출 하였다. 추출한 윤곽선 영상를 이진화하여 Mophology operation을 사용하여 문자부분 윤곽선을 강조시켰다. 그리고 문자의 종횡비를 판별하여 번호판의 문자와 유사한 비율의 윤곽선을 추출하였다. 그리고 윤곽이 가장 길게 이어진 경우를 차량 번호판으로 추정하여 검출 하였다. 본 연구에서는 차량 정면 뿐 아니라 기울어져 있는 차량의 번호판, 차량 주변 환경의 변화를 가지는 차량 번호판 등 다양한 130개의 차량 영상 데이터를 사용하였다. 그리고 번호판의 패턴이 다른 오토바이 영상에서도 실험 하였다. 실험 결과 기울어져 있는 영상은 93%, 다양한 배경 환경에서는 90% 오토바이영상에서는 70%의 검출률을 나타냈으나 정면의 영상에서 98%의 검출률을 나타내었다.

퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템 (Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm)

  • 김광백;허경용;우영운
    • 한국정보통신학회논문지
    • /
    • 제11권7호
    • /
    • pp.1380-1386
    • /
    • 2007
  • 본 논문에서는 퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡음 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. ART2 기반 자가 생성 지도 학습 알고리즘은 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.