• 제목/요약/키워드: imae segmentation

검색결과 2건 처리시간 0.014초

공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류 (Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제17권1호
    • /
    • pp.57-69
    • /
    • 2001
  • 본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.

원격 로봇작업을 위한 실시간 수박 형상 추출 알고리즘 (Development of Real Time and Robust Feature Extraction Algorithm of Watermelon for Tele-robotic Operation)

  • 김시찬;황헌
    • Journal of Biosystems Engineering
    • /
    • 제29권1호
    • /
    • pp.71-78
    • /
    • 2004
  • Real time and robust algorithm to extract the features of watermelon was developed from the remotely transmitted image of the watermelon. Features of the watermelon at the cultivation site such as size and shape including position are crucial to the successful tole-robotic operation and development of the cultivation data base. Algorithm was developed based on the concept of task sharing between the computer and the operator utilizing man-computer interface. Task sharing was performed based on the functional characteristics of human and computer. Identifying watermelon from the image transmitted from the cultivation site is very difficult because of the variable light condition and the complex image contents such as soil, mulching vinyl, straws on the ground, irregular leaves and stems. Utilizing operator's teaching through the touch screen mounted on the image monitor, the complex time consuming image processing process and instability of processing results in the watermelon identification has been avoided. Color and brightness characteristics were analyzed from the image area specified by the operator's teaching. Watermelon segmentation was performed using the brightness and color distribution of the specified imae processing area. Modified general Hough transform was developed to extract the shape, major and minor axes, and the position, of the watermelon. It took less than 100 msec of the image processing time, and was a lot faster than conventional approach. The proposed method showed the robustness and practicability in identifying watermelon from the wireless transmitted color image of the cultivation site.