• Title/Summary/Keyword: illumination Robust Face Recognition

Search Result 52, Processing Time 0.024 seconds

Robust Face Recognition based on Gabor Feature Vector illumination PCA Model (가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식)

  • Seol, Tae-In;Kim, Sang-Hoon;Chung, Sun-Tae;Jo, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.67-76
    • /
    • 2008
  • Reliable face recognition under various illumination environments is essential for successful commercialization. Feature-based face recognition relies on a good choice of feature vectors. Gabor feature vectors are known to be more robust to variations of pose and illumination than any other feature vectors so that they are popularly adopted for face recognition. However, they are not completely independent of illuminations. In this paper, we propose an illumination-robust face recognition method based on the Gabor feature vector illumination PCA model. We first construct the Gabor feature vector illumination PCA model where Gator feature vector space is rendered to be decomposed into two orthogonal illumination subspace and face identity subspace. Since the Gabor feature vectors obtained by projection into the face identity subspace are separated from illumination, the face recognition utilizing them becomes more robust to illumination. Through experiments, it is shown that the proposed face recognition based on Gabor feature vector illumination PCA model performs more reliably under various illumination and Pose environments.

Illumination-Robust Face Recognition based on Illumination-Separated Eigenfaces (조명분리 고유얼굴에 기반한 조명에 강인한 얼굴 인식)

  • Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • The popular eigenfaces-based face recognition among proposed face recognition methods utilizes the eigenfaces obtained from applying PCA to a training face image set. Thus, it may not achieve a reliable performance under illumination environments different from that of training face images. In this paper, we propose an illumination-separate eigenfaces-based face recognition method, which excludes the effects of illumination as much as possible. The proposed method utilizes the illumination-separate eigenfaces which is obtained by orthogonal decomposition of the eigenface space of face model image set with respect to the constructed face illumination subspace. Through experiments, it is shown that the proposed face recognition method based on the illumination-separate eigenfaces performs more robustly under various illumination environments than the conventional eigenfaces-based face recognition method.

Face Image Illumination Normalization based on Illumination-Separated Eigenface Subspace (조명분리 고유얼굴 부분공간 기반 얼굴 이미지 조명 정규화)

  • Seol, Tae-in;Chung, Sun-Tae;Ki, Sunho;Cho, Seongwon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-184
    • /
    • 2009
  • Robust face recognition under various illumination environments is difficult to achieve. For face recognition robust to illumination changes, usually face images are normalized with respect to illumination as a preprocessing step before face recognition. The anisotropic smoothing-based illumination normalization method, known to be one of the best illumination normalization methods, cannot handle casting shadows. In this paper, we present an efficient illumination normalization method for face recognition. The proposed illumination normalization method separates the effect of illumination from eigenfaces and constructs an illumination-separated eigenface subspace. Then, an incoming face image is projected into the subspace and the obtained projected face image is rendered so that illumination effects including casting shadows are reduced as much as possible. Application to real face images shows the proposed illumination normalization method.

  • PDF

Illumination Robust Face Recognition using Ridge Regressive Bilinear Models (Ridge Regressive Bilinear Model을 이용한 조명 변화에 강인한 얼굴 인식)

  • Shin, Dong-Su;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • The performance of face recognition is greatly affected by the illumination effect because intra-person variation under different lighting conditions can be much bigger than the inter-person variation. In this paper, we propose an illumination robust face recognition by separating identity factor and illumination factor using the symmetric bilinear models. The translation procedure in the bilinear model requires a repetitive computation of matrix inverse operation to reach the identity and illumination factors. Sometimes, this computation may result in a nonconvergent case when the observation has an noisy information. To alleviate this situation, we suggest a ridge regressive bilinear model that combines the ridge regression into the bilinear model. This combination provides some advantages: it makes the bilinear model more stable by shrinking the range of identity and illumination factors appropriately, and it improves the recognition performance by reducing the insignificant factors effectively. Experiment results show that the ridge regressive bilinear model outperforms significantly other existing methods such as the eigenface, quotient image, and the bilinear model in terms of the recognition rate under a variety of illuminations.

Visual Observation Confidence based GMM Face Recognition robust to Illumination Impact in a Real-world Database

  • TRA, Anh Tuan;KIM, Jin Young;CHAUDHRY, Asmatullah;PHAM, The Bao;Kim, Hyoung-Gook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1824-1845
    • /
    • 2016
  • The GMM is a conventional approach which has been recently applied in many face recognition studies. However, the question about how to deal with illumination changes while ensuring high performance is still a challenge, especially with real-world databases. In this paper, we propose a Visual Observation Confidence (VOC) measure for robust face recognition for illumination changes. Our VOC value is a combined confidence value of three measurements: Flatness Measure (FM), Centrality Measure (CM), and Illumination Normality Measure (IM). While FM measures the discrimination ability of one face, IM represents the degree of illumination impact on that face. In addition, we introduce CM as a centrality measure to help FM to reduce some of the errors from unnecessary areas such as the hair, neck or background. The VOC then accompanies the feature vectors in the EM process to estimate the optimal models by modified-GMM training. In the experiments, we introduce a real-world database, called KoFace, besides applying some public databases such as the Yale and the ORL database. The KoFace database is composed of 106 face subjects under diverse illumination effects including shadows and highlights. The results show that our proposed approach gives a higher Face Recognition Rate (FRR) than the GMM baseline for indoor and outdoor datasets in the real-world KoFace database (94% and 85%, respectively) and in ORL, Yale databases (97% and 100% respectively).

Robust Face Recognition Against Illumination Change Using Visible and Infrared Images (가시광선 영상과 적외선 영상의 융합을 이용한 조명변화에 강인한 얼굴 인식)

  • Kim, Sa-Mun;Lee, Dea-Jong;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • Face recognition system has advanctage to automatically recognize a person without causing repulsion at deteciton process. However, the face recognition system has a drawback to show lower perfomance according to illumination variation unlike the other biometric systems using fingerprint and iris. Therefore, this paper proposed a robust face recogntion method against illumination varition by slective fusion technique using both visible and infrared faces based on fuzzy linear disciment analysis(fuzzy-LDA). In the first step, both the visible image and infrared image are divided into four bands using wavelet transform. In the second step, Euclidean distance is calculated at each subband. In the third step, recognition rate is determined at each subband using the Euclidean distance calculated in the second step. And then, weights are determined by considering the recognition rate of each band. Finally, a fusion face recognition is performed and robust recognition results are obtained.

Face Illumination Normalization based on Illumination-Separated Face Identity Texture Subspace (조명영향 분리 얼굴 고유특성 텍스쳐 부분공간 기반 얼굴 이미지 조명 정규화)

  • Choi, Jong-Keun;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Robust face recognition under various illumination environments is difficult to achieve. For robust face recognition with respect to illumination variations, illumination normalization of face images is usually applied as a preprocessing step. Most of previously proposed illumination normalization methods cannot handle cast shadows in face images effectively. In this paper, We propose a new face illumination normalization method based on the illumination-separated face identity texture subspace. Since the face identity texture subspace is constructed so as to be separated from the effects of illumination variations, the projection of face images into the subspace produces a good illumination-normalized face images. Through experiments, it is shown that the proposed face illumination normalization method can effectively eliminate cast shadows as well as attached shadows and achieves a good face illumination normalization.

Face Recognition Based on the Combination of Enhanced Local Texture Feature and DBN under Complex Illumination Conditions

  • Li, Chen;Zhao, Shuai;Xiao, Ke;Wang, Yanjie
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.191-204
    • /
    • 2018
  • To combat the adverse impact imposed by illumination variation in the face recognition process, an effective and feasible algorithm is proposed in this paper. Firstly, an enhanced local texture feature is presented by applying the central symmetric encode principle on the fused component images acquired from the wavelet decomposition. Then the proposed local texture features are combined with Deep Belief Network (DBN) to gain robust deep features of face images under severe illumination conditions. Abundant experiments with different test schemes are conducted on both CMU-PIE and Extended Yale-B databases which contain face images under various illumination condition. Compared with the DBN, LBP combined with DBN and CSLBP combined with DBN, our proposed method achieves the most satisfying recognition rate regardless of the database used, the test scheme adopted or the illumination condition encountered, especially for the face recognition under severe illumination variation.

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

Adaptive Smoothing Based on Bit-Plane and Entropy for Robust Face Recognition (환경에 강인한 얼굴인식을 위한 CMSB-plane과 Entropy 기반의 적응 평활화 기법)

  • Lee, Su-Young;Park, Seok-Lai;Park, Young-Kyung;Kim, Joong-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.869-870
    • /
    • 2008
  • Illumination variation is the most significant factor affecting face recognition rate. In this paper, we propose adaptive smoothing based on combined most significant bit (CMSB) - plane and local entropy for robust face recognition in varying illumination. Illumination normalization is achieved based on Retinex method. The proposed method has been evaluated based on the CMU PIE database by using Principle Component Analysis (PCA).

  • PDF