• Title/Summary/Keyword: ill-structured problem

Search Result 41, Processing Time 0.027 seconds

Analysis of the Scientific Inquiry Problem Generated by the Scientifically-Gifted in Ill and Well Inquiry Situation (구조화 정도가 다른 탐구 상황에서 과학영재들이 생성한 과학탐구문제 비교 분석)

  • Ryu, Si-Gyeong;Park, Jong-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.860-869
    • /
    • 2008
  • The purpose of this study is to suggest an instructional direction for improving scientific inquiry problem-finding ability of the scientifically-gifted. For this purpose, this study has made an in-depth analysis of the scientific inquiry problems generated by the scientifically-gifted in Problem-Finding Activity in Ill-structured Inquiry Situation (PFAIIS) and Problem-Finding Activity in Well-structured Inquiry Situation (PFAWIS). The results of this study turned out to be as follows: First, most of the problems generated in PFAIIS and PFAWIS could be categorized into seven types (measurement, method, cause, possibility, what, comparison, relationship) according to the inquiry objectives, while the frequency of each type shown in each inquiry objective was a little different. Second, the frequency of scientific concepts stated in inquiry problem was more in PFAWIS than in PFAIIS. But the scientific concepts were shown more diversely in PFAIIS than in PFAWIS. Therefore, results of this study have the following educational implications. First, it is necessary to offer various opportunities of problem-finding activity under ill-structured scientific Inquiry situation. Second, it is needed to emphasize that a new inquiry problem can be found out even during general scientific experiment and frequently to discuss inquiry problems generated during an experiment. Third, it is needed to encourage the scientifically-gifted to generate a scientific inquiry problem based on at least more than seven types.

Teaching Methodology for Future Mathematics Classroom:Focusing on Students' Generative Question in Ill-Structured Problem (미래학교 수학교실의 교육 방법론에 대한 탐색:비구조화된 문제에서 학생들의 질문 만들기를 중심으로)

  • Na, Miyeong;Cho, Hyungmi;Kwon, Oh Nam
    • The Mathematical Education
    • /
    • v.56 no.3
    • /
    • pp.301-318
    • /
    • 2017
  • This paper explores students' question generation process and their study in small group discussion. The research is based on Anthropological Theory of the Didactic developed by Chevallard. He argues that the savior (knowledge) we are dealing with at school is based on a paradigm that we prevail over whether we 'learn' or 'study' socially. In other words, we haven't provided students with autonomous research and learning opportunities under 'the dominant paradigm of visiting works'. As an alternative, he suggests that we should move on to a new didactic paradigm for 'questioning the world a question', and proposes the Study and Research Courses (SRC) as its pedagogical structure. This study explores the SRC structure of small group activities in solving ill-structured problems. In order to explore the SRC structure generated in the small group discussion, one middle school teacher and 7 middle school students participated in this study. The students were divided into two groups with 4 students and 3 students. The teacher conducted the lesson with ill-structured problems provided by researchers. We collected students' presentation materials and classroom video records, and then analyzed based on SRC structure. As a result, we have identified that students were able to focus on the valuable information they needed to explore. We found that the nature of the questions generated by students focused on details more than the whole of the problem. In the SRC course, we also found pattern of a small group discussion. In other words, they generated questions relatively personally, but sought answer cooperatively. This study identified the possibility of SRC as a tool to provide a holistic learning mode of small group discussions in small class, which bring about future mathematics classrooms. This study is meaningful to investigate how students develop their own mathematical inquiry process through self-directed learning, learner-specific curriculum are emphasized and the paradigm shift is required.

An Analysis of Middle Schoolers' Science Self-Efficacy Development in Problem Based Learning (문제중심학습에 참여한 중학생의 과학적 자기효능감 형성 과정 분석)

  • Lee, Solhee;Chung, Younglan
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • The present study tries to identify the characteristics of Problem Based Learning (PBL), which affects the development of middle school students' science self-efficacy. Additionally, we have tried to analyze the relationship within those characteristics to demonstrate the processes of science self-efficacy development. In line with this reasoning, we have developed a 20-module, problem-based learning science program and applied this program to 9th grade students (n=17). Two rounds of qualitative interviews have been conducted with each participant after the program, which has been analyzed with the well-documented method by Corbin and Strauss (2007). As a result, three characteristics of problem based learning have been identified to affect the development of science self-efficacy: a) authentic and ill-structured problem sets, b) small group activity, and c) result sharing. Further analysis has revealed that an authentic and ill-structured problem set as a condition precedent of self-efficacy development, while small group activity has worked as an acceleration condition. Lastly, sharing the result works as a transition condition to future interest on science-related activity or choosing science-related majors.

Aspects of Understandings on Statistical Variability across Varying Degrees of Task Structuring (과제의 구조화 정도에 따른 초등학생들의 통계적 변이성 이해 양상에 대한 사례 연구)

  • Han, Chaereen;Lee, Kyungwon;Kim, Doyen;Bae, Mi Seon;Kwon, Oh Nam
    • Education of Primary School Mathematics
    • /
    • v.21 no.2
    • /
    • pp.131-150
    • /
    • 2018
  • The structure of a mathematics task shapes the aspects of learning of those who solve the task. This study explores the process of understandings on the statistical variability of primary school students. Students were given two problems with different degrees of structuring - a well-structured problem (WSP) and an ill-structured problem (ISP) - and discussed in a group to solve each task. The highest level of development achieved in both cases appeared to be similar. However, when given the ISP, students dynamically proposed ideas and justified the conclusion based on their hypothesis. Furthermore, all students actively participated in solving the ISP until the end whereas some students were marginalized while solving the WSP. This discrepancy results from the difference in the degrees of task structuring.

An Analysis of High School Students' Activity on Problem-finding in III-structured Scientific Problem Situation (낮게 구조화된 과학적 문제 상황에서 고등학생들의 문제발견 활동 분석)

  • Ryu, Si-Kyung;Park, Jong-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.6
    • /
    • pp.765-774
    • /
    • 2006
  • The purpose of this study was to suggest an instructional direction for improving scientific problem-finding ability. For this purpose, the present study made an in-depth analysis about activity on problem finding tasks of high school students in an ill-structured scientific problem situation. Subjects were divided into two groups (cooperative and individual) and two kinds of problem finding tasks were administered to two groups. Results indicated that a cooperative activity on problem finding happened to a series of steps exploring problem situation, expressing knowledge and experience, discussing provisional problems, creating various problems and selecting the best problem. Besides, a cooperative activity on problem finding depended heavily on prior knowledge and experience, and in the meantime, various scientific concepts turned out to naturally be expressed. As for the problems found out during a cooperative activity, their scores in creativity factors, including the degree of agreement in original problem selection came out to be on the whole, as excellent. In addition, the types of the problems found out in open problem situation showed that they were more various than those found out in closed problem situation. Subjects perceived that activity on problem finding had positive influence on scientific concept and science process skills. Findings of this study have the following educational implications: First, it is needed to prepare for educational environment that enables students to explore various knowledge and information. Second, the offering of various opportunities is needed to enlarge the scope of scientific knowledge and experience. Third, it is needed to prepare for a study atmosphere that lets students express their knowledge and experiences freely.

Re-engineering Adult Education Programme-an Online Learning Curricular Perspective

  • Mathai, K.J.;Karaulia, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.685-697
    • /
    • 2003
  • The Web based multimedia programmes/courses are becoming widely available in recent years. Most of these courses focus on Behaviorist way of learning, which does not promote deep learning in any way. For Adults this approach further incapacitated, as it does not satisfy Andragogical needs. The search for Constructivist way of learning through the web applied to Indian conditions led to need for developing a curriculum development approach that would promote construction of knowledge through web based collaboration. This paper attempts to reengineer existing curriculum development processes and lays out a framework of‘Problem Based Online Learning (PBOL)’curriculum design. In this context, entire curriculum development life cycle is evolved and explained. This is a part of doctoral work (Ph.D), which is in progress and being undertaken by K.James Mathai, and guided of Dr.D.S.Karaulia.

  • PDF

An Analysis on the Characteristics of Problem-Finding and the Aspects of Using Science and Technology of Undergraduate Students' Convergence Problem Solving Activity (대학생들의 융합형 문제 해결 활동에서 문제발견 및 과학기술 분야 활용 양상 분석)

  • Baek, Jongho
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.867-876
    • /
    • 2016
  • In accordance with the changing of society, remarkable increase in knowledge and information, the competencies to choose and use proper information in various domains are considered as an important skill. As one of the methods in developing these competencies, it is emphasized that a problem-based learning can make student understand and use knowledge by solving the contextualized problem. However, it is skeptical of learner's development of competencies to use knowledge by solving well-defined given problem. Therefore it is required that students be allowed to develop the competency to find problem through experiences to determine and evaluate the purpose of the problem and method. The purpose of this study is to understand how undergraduate students use science or technology in finding a problem. In this line, this study articulated four cases conducted by participants who engaged in convergence teaching-learning program. And this study investigated the participants' process of problem-finding, method and reason to apply science or technology. The results were drawn by analyzing interviews and written data, including their proposal, a poster, and final reports. Participants changed the form of problem from initial ill-structured one into a concrete one, where the participant could derive a detailed solution. Science or technology applied as the detailed example to convert problem into a concrete form, or as the analyzing tool or theoretical background of problem to make a link with other domain. Their reason of applying science or technology could be summarized in 'personal interest based on prior experience' and 'alternatives to resolve a dissatisfaction.' Based on the result, this study suggests holistic approach that is included in both intuitive thinking and logical thinking and metacognitive regulation to stimulate problem-finding in problem-based learning program.

A Study on the Effect of Problem Based Learning to Improve Students' Ability in Using ICT (학생의 ICT 활용 능력 향상을 위한 문제 중심 학습(PBL)의 효과에 관한 연구)

  • Ahn, Seong-Hun
    • Journal of The Korean Association of Information Education
    • /
    • v.6 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • In this paper, I survey the field which students use ICT and propose a teaching and learning model to improve students' ability in using ICT. Also, I apply it and prove its' effect. Because Problem Based Learning treats ill-structured problem which reflects actuality, Students can pick up the actual knowledge and become verse in general principle or concept which can transmit resemble problem or situation. Therefore, I hope a teaching and learning model which I propose in this paper has an effect to improve students' ability in using ICT.

  • PDF

Applying design thinking to the educational problems: A student-centered instructional approach and practice in an undergraduate course

  • CHA, Hyunjin
    • Educational Technology International
    • /
    • v.20 no.1
    • /
    • pp.83-107
    • /
    • 2019
  • The aim of this study is to provide the values and descriptive implications of the Design Thinking (DT) method into the context of educational problems of practice in an undergraduate course. To achieve the research objective, both quantitative and qualitative studies were conducted. For the qualitative study, the student's productions and reflections on the experience of the application of the DT into educational problems were analyzed. For the quantitative research, one-group pre and post-test were designed to validate the effectiveness of the DT method into educational contexts in terms of creativity level to measure the student's Creativity Potential and Practiced Creativity, Academic Self-Efficacy Scale, and Problem-Solving Inventory. This study validated that the DT method had a statistically significant influence on those three competencies and also illustrated the detailed process from a qualitative viewpoint. The results and implications reflect the potential of the DT approach with the educational problem of practice, especially, in the ill-structured problem-solving contexts for student-centered instructional setting.

A Study on a Conceptualization-oriented SDSS Model for Landscape Design (조경설계를 위한 공간개념화 지향의 공간의사결정지원시스템 모델에 대한 연구)

  • Kim, Eun Hyung
    • Spatial Information Research
    • /
    • v.22 no.6
    • /
    • pp.55-65
    • /
    • 2014
  • By combining the role of current GIS technology and design behaviors from the cognitive perspective, spatial conceptualization can be extended efficiently and creatively for ill-structured problems. This study elaborates the model of a conceptualization-oriented SDSS(Spatial Decision Support System) for a landscape design problem. Current information-oriented GIS technology plays a minor role in planning and design. The three attributes in planning and design problems describe how the deficiencies of current GIS technology can be seen as a failure of the technology. These are summarized: (1) Information Explosion/Information Ignorance (2) Dilemma of Rigor and Relevance (3) Ill-structured Nature of planning and Design. In order to implement the conceptualization idea in the current GIS environment, it will be necessary to shift from traditional, information-oriented GISs to conceptualization-oriented SDSSs. The conceptualization-oriented SDSS model reflects the key elements of six important theories and techniques. The six useful theories and techniques are as follows; (1) Human Information Processing (2) Tool/Theory Interaction (3) The Sciences of the Artificial and Epistemology of Practice (4) Decision Support Systems (DSSs) (5) Human-Computer Interaction (HCI) (6) Creative Thinking. The future conceptualization-oriented SDSS can provide capabilities for planners and designers to figure out some "hidden organizations" in spatial planning and design, and develop new ideas through its conceptualization capability. The facilitation of conceptualization has been demonstrated by presenting three key ideas for the framework of the SDSS model: (1) bubble-oriented design support system (2) prototypes as an extension of semantic memory, and (3) scripts as an extension of episodic memory in a cognitive pschology perspective. The three ideas can provide a direction for the future GIS technology in planning and design.