• Title/Summary/Keyword: ignition temperature

Search Result 883, Processing Time 0.023 seconds

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

A DNS Study of Ignition Characteristics of Lean PRF/Air Mixtures under HCCI Conditions (HCCI 조건에 일어나는 희박 PRF/공기 혼합물의 점화특성에 관한 직접수치모사 연구)

  • Luong, Minh Bau;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.153-156
    • /
    • 2012
  • Direct numerical simulations (DNSs) of ignition of lean primary reference fuel (PRF)/air mixtures under homogeneous charge compression ignition (HCCI) conditions are performed using 116-species reduced chemistry. The influence of variations in the initial temperature field, imposed by changing the variance of temperature, and the fuel composition on ignition of lean PRF/air mixtures is studied using the displacement speed analysis.

  • PDF

Shock Tube and Modeling Study of the Monomethylamine Oxidation at High Temperature

  • Shin, Kuan-Soo;Yoo, Sang-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.293-297
    • /
    • 2004
  • The ignition of monomethylamine was studied in reflected shock waves over the temperature range of 1255- 1579 K and the pressure range of 1.04-1.51 bar. The ignition delay time was measured by the sudden increase of pressure profile and the radiation emitted by OH radicals. The relationship between the ignition delay time and the concentrations of monomethylamine and oxygen was determined in the form of mass-action expressions with an Arrhenius temperature dependence. In contrast to the behavior observed in hydrocarbons, monomethylamine acts to accelerate rather than inhibit its own ignition. And numerical modeling of the ignition of $CH_3NH_2$ has also been carried out to test the several kinetic mechanisms.

A Study on Spontaneous Ignition of Granulated Activated Carbon (입상활성탄의 자연발화에 관한 연구(I))

  • 목연수;최재욱;김상렬;최광재
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.66-72
    • /
    • 1991
  • Spontaneous ignition characteristics were observed by performing experiments for granulated activated carbon at constant ambient temperature in an oven. As the results of the experiments, the critical spontaneous ignition temperature of sample for large, intermediate and small vessels was 158.5$^{\circ}C$ , 165.5$^{\circ}C$ and 174.5$^{\circ}C$, respectively. It was found that the critical spontaneous ignition temperature decreased and the ignition induction time increased as the sample vessel size increased. Apparent activation energy of the sample calculated from the Frank= kamenetskii's thermal ignition theory was 17.81*10$^3$J/mol.

  • PDF

A Study of Evaporation and Ignition Characteristics of Single Fuel Droplet (단일액적의 증발 및 착화특성에 관한 연구)

  • 백병준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.551-559
    • /
    • 1998
  • Evaporation and ignition characteristics of fuel droplet have major influences on the efficiency and performance of engine. In the present study the experiment of evaporation and self-ignition of single fuel was performed under the various ambient conditions. An individually suspended droplet of n-heptane n-hexadecane ethyl-alcohol and light oil were employed as a liquid droplet. Evaporation and ignition characteristics were measured by using the video-camera and image processing technique under the various ambient temperatures (up to 1000310 OC)and partial pressure of oxigen(up to 60%) The evaporation curve shows that the droplet life time ignition delay time decreases as the ambient temperature and partial pressure of oxigen increase, The temperature variations of droplet were also reported for various fuel and ambient temperatures. The numerical simulations were carried out to predict droplet diameter and temperature with favorable agreement.

  • PDF

An Experimental Study on the Evaporation and Ignition of CWS Droplets (CWS액적의 증발 및 점화에 관한 실험적 연구)

  • 안국영;백승욱;김관태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1246-1252
    • /
    • 1993
  • Coal-Water slurry (CWS) is a new potential form of fuel for use in power plants and industrial furnaces. The evaporation and ignition characteristics of CWS have been studied in the post-flame region generated by a flat flame burner. Individual droplets with initial diameters of 1-3mm were supported around the thermocouples and raidly exposed to a hot gas stream. The gas temperature ranged between $950^{\circ}C$ and 1600.deg. C at atmospheric pressure. The effect of droplet size, gas temperature and radiative heat transfer by screen were studied experimentally. The ignition criterion was either a rapid temperature rise in time-temperatuire curves or onset of visible flame in experiment. Incresing the gas temperature or decreasing the droplet size reduced the time required for evaporation and ignition.

A Study on Char Oxidation Kinetics by Direct Measurement of Coal Ignition Temperature (석탄점화온도의 직접적인 측정에 의한 촤산화 반응율 도출에 대한 연구)

  • Kwon, Jong-Seo;Kim, Ryang-Gyoon;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The experiment was designed to study the char oxidation kinetics of pulverized coals commonly utilized in Korean power plants. The kinetics has been estimated using the Semenov's thermal spontaneous ignition theory adapted to coal char particle ignition temperature. The ignition temperature of coal char particle is obtained by a direct measurement of the particle temperature with photo detector as well as by means of a solid thermocouple which is used as both a heating and a measuring element. The ignition temperatures for subbituminous coal, Wira, and bituminous coal, Yakutugol, have been measured for 4 sizes in the range of 0.52-1.09 mm. The ignition temperature of the particle increases with the increasing diameter. The results were used to calculate the activation energy and the pre-exponential factor. As a result, the kinetic parameters are in an agreement with ones reported from other investigations.

A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud (Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구)

  • Lim, Woo-Sub;Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.137-140
    • /
    • 2004
  • The minimum ignition temperature at which the dust cloud can spontaneously ignite is considered to be very important in industries to prevent explosion occurring in hot surfaces. This paper has dealt with the experimental study of the determination of minimum ignition temperature of Hydroxy Propyl Methyl Cellulose (HPMC) dust cloud. We have used the Godbert-Greenwald Furnace Apparatus to determine the ignition temperature and limiting oxyten concentration for dust could. The experimental determinations on the minimum ignition temperature were carried out with various particle size with nominal diameters 45, 75 and 106${\mu}m$. The limiting oxygen concentration of dust cloud was determinated for the smaller size(45${\mu}m$) HPMC. Minimum ignition temperature of dust cloud was at 364$^{\circ}C$ for the concentration of 2.5g/L in the air and became higher with the increasing of nitrogen concentration. It was also found that the ignition didn't occur when the oxygen concentration was below 10%, and limiting oxygen concentration is at 11%.

Effect of Inlet Temperature and CO2 Concentration in the Fresh Charge on Combustion in a Homogeneous Charge Compression Ignition Engine Fuelled with Dimethyl Ether (Dimethyl Ether 예혼합 압축 착화 엔진에서 흡기중 CO2 농도와 흡기온도 변화가 연소에 미치는 영향)

  • Bae, Choong-Sik;Jang, Jin-Young;Yeom, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.514-521
    • /
    • 2007
  • This study focused on the effects of the $CO_2$ gas concentration in fresh charge and induction air temperature on the combustion characteristics of homogeneous charge compression ignition with dimethyl ether (DME) fuel, which was injected at the intake port. Because of adding $CO_2$ in fresh charge, start of auto-ignition was retarded and bum duration became longer. Indicated combustion efficiency and exhaust gas emission were found to be worse due to the incomplete combustion. Partial burn was observed at the high concentration of $CO_2$ in fresh charge with low temperature of induction air. However, indicated thermal efficiency was improved due to increased expansion work by late ignition and prolonged bum duration. Start of auto-ignition timing was advanced with negligible change of burn duration, as induction air temperature increased. Burn duration was mainly affected by oxygen mole concentration in induction mixture. Bum duration was increased, as oxygen mole concentration was decreased.

Study on Ignition Position-related changes in Warm Needle Temperature (온침(溫鍼)의 표준화를 위한 점화부위별 온도(溫度) 측정 연구)

  • Kim, Yoon-Hong;Lee, Seung-Ho;Yeo, Su-Jung;Choi, Il-Hwan;Kim, Young-Kon;Lim, Sa-Bi-Na
    • Korean Journal of Acupuncture
    • /
    • v.25 no.1
    • /
    • pp.247-257
    • /
    • 2008
  • Objectives : The warm needling technique is the method in combining the effects of acupuncture needle with the effects of moxibustion. We need to standardize the characteristics of the warm needling technique in order to get more systematic and objective result in operation mechanism and effects and then get more clinical abilities in these fields. Methods : In this study, using of labview system on the warm needling technique we studied about measurement and comparison with partial temperature changes according to the position of ignition. Results & conclusion : When we measured the warm needling's partial temperature according to the position of ignition, the bottom ignition method got the higher result on the peak temperature measured at 2cm below the head than the apex ignition method.

  • PDF