• Title/Summary/Keyword: ignition hazard

Search Result 84, Processing Time 0.023 seconds

Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles (부유 분진의 정전압에 의한 최소착화에너지 위험성평가)

  • Han, Oue-Sup
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.359-365
    • /
    • 2021
  • We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.

A Study on the Explosion Hazard by Spark Discharge of the Lithium-Ion Battery (리튬이온전지의 불꽃방전에 의한 폭발위험성에 관한 연구)

  • Lee, Chun-Ha;Jee, Seung-Wook;Kim, Shi-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.14-20
    • /
    • 2010
  • This paper was studied on the explosion hazard by spark discharge of the lithium-ion battery. The experimental samples were chosen lithium-ion battery(general, notebook) which were used for source of portable equipment. The IEC(International Electrotechnical Commission) type spark ignition test apparatus and experimental gases such as methane, propane, ethylene or hydrogen were used for explosiveness test. It was confirmed through the experiment that the explosion hazard by spark discharge. Also, it was used thermal imager for confirm that spontaneous ignition possibility by short-circuit. As the result, this paper verified that lithium-ion battery should be used and designed by special attention safety in the hazardous zone which is existed explosiveness gas.

Ignition Hazard of Flammable Atmospheres by Optical Radiation (광 방사로부터 점화 위험성)

  • Choe, Sang-Won
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.5 no.1
    • /
    • pp.25-28
    • /
    • 2004
  • Since the very first use of optical systems in the process industries there has been a tacit assumption that, because they are not electrical, they do not present an ignition risk when used in flammable atmospheres. This paper describes about an optical ignition mechanism from experimental work carnied out by Sira Safety Services Limited(UK) and whether there is sufficient of an ignition risk for precautions to be advisable when optical systems are used in flammable atmospheres.

  • PDF

Autoignition Characteristics of Limonene - Expanded Polystyrene Mixture (Limonene - Expanded Polystyrene 혼합물의 자연발화 특성)

  • 송영호;하동명;정국삼
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • In the reutilization process using limonene, the organic solvent to reduce volume of EPS, the AIT was measured with the variation of concentration and volume of mixture, in order to present the fund-mental data on the fire hazard assessment of limonene - EPS mixture at storage and handling. And ignition zone was compared with non-ignition zone. The equation related to AIT, activation energy and ignition delay time, used by the most scientific basis for predicting AIT values, was suggested using linear regression analysis as ln t = 0.704/T-5.819. And the equation related to concentration of mixture and AIT was also suggested to predict ignition hazard of combustible mixture using nonlinear regression analysis as $T_m/=248.32+69.27X+172.60X^2$. It enabled to predict ignition temperature according to variation of ignition delay time and concentration of mixture by the suggested equations.

THERMAL AND SMOKE MEASUREMENTS OF VEHICLE FIRES Establishing practical large-scale experiment for vehicle fires

  • Kim, Jeong-Hun;Kim, Hong;Lee, Bog-Young;Lee, Chang-Seop
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.335-342
    • /
    • 1997
  • Experiments were conducted to evaluate the hazard risks of vehicle fires. Sensors were strategically placed in passenger cars to determine the temperature, propagation rate and direction of flame. The life safety hazard evaluations such as smoke and gas analysis were included. An important ignition position was performed in the engine compartment. The effects of different ignition positions and the opening of door glasses were also reviewed. The experimental results indicate that the maximum temperature when a vehicle burns varies commonly from 90$0^{\circ}C$ -100$0^{\circ}C$. The flame reaches in the face of a driver about 6-7minutes and the windshield glass breaks about 10 minutes after the ignition in the engine compartment of vehicle. And the smoke and gas concentrations reached the limit of human inhalation after 13-14 minutes. Especially the concentrations of carbon monoxide exceeded the TWA(50 ppm) during short time after ignition in cases of all experiments.

  • PDF

A Study on Characteristics of the Ignition by Cigarette Light on Corrugated Board and Oils (골판지 및 유류등의 담뱃불 발화특성에 관한 실험적 연구)

  • Yun, In-Su;Kim, Byung-Seon;Cho, Won-Cheol;Lee, Tae-Shik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.173-176
    • /
    • 2008
  • The purpose of this study was to use case analysis and experimentations to examine the ignition characteristics of the cigarette lights on corrugated board and oils etc. As a result of the tested. The corrugated board could be ignited by cigarette light, but gasoline and lacquer thinner could seldom be ignited.

  • PDF

A Study on the Fire Hazard of Transportation Oil (수송기관용 오일의 화재위험성에 관한 연구)

  • Park, Young Ju;Hwang, Me Jung;Lee, Hae Pyeong;Lee, Seung Chul;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.114-120
    • /
    • 2014
  • The purpose of this study is to conduct the study of the combustion and thermal characteristics through transportation oil for the analysis of fire hazard. Transportation oil breaks down into fuels such as diesel for civilian demands, gasoline, DF1(diesel for military), high sulfur diesel(for marine), kerosene and JP1(for aviation), and lubricants like brake fluid, power steering oil, engine oil, and automatic and manual transmission oil. The experiments of flash point, ignition point, flame duration time, heat release rate were carried out using TAG closed cup flash point tester(AFP761), Cleveland open cup auto flash point analyzer(AFP762), KRS-RG-9000 and Dual cone calorimeter. As a result, the fuel's ignition points were lower than lubricants, especially that of gasoline was not conducted as it has below zero one. Gasoline has the highest ignition point of about $600^{\circ}C$, while the other fuels showed $400{\sim}465^{\circ}C$. For flame duration time, lubricants had over 300 seconds, but fuels had less than 300 seconds except high sulfur diesel(350 seconds). Total heat release rate ranged $287{\sim}462kW/m^2$ for lubricants and gasoline showed the highest total heat release rate, $652kW/m^2$.

A Study on the Ignition Behaviors of Textiles according to Permeation Amount of Oils and Aeration (유지류의 침윤량과 공기주입에 따른 면화류의 발화거동에 관한 연구)

  • 오치훈;이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-12
    • /
    • 2000
  • We had investigated thermal and ignition behaviors of textiles. Decomposition of textiles with temperature was investigated using a DSC and the weight loss according to temperature using a TGA in order to find the thermal hazard of textiles, and the ignition behaviors of textiles according to species and permeation amount of oil. In addition, ignition behaviors of those permeated into oils indicating different iodine value and of those with arid without air in reaction vessel of measuring equipment were studied with constant temperature method among ignition temperature measuring methods. As results, the range of decomposition temperature of synthetic fiber was slightly broad compared with that of natural fiber, pure cotton. Besides, the initiation temperature of heat generation of both samples riced in the case of no air injection in the reaction vessel. On the other hand, in the case of air injection that was lowered according to the increase in permeative amount of oils and fats and decreased quickly as sample was permeated into drying oil.

  • PDF

A Study on the Thermal Hazard and Explosion with Floating of Sanitary Feed-stuff (위생사료의 열적 위험성 및 부유 중 폭발성에 관한 연구)

  • 김정환;이한철;현성호;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.82-87
    • /
    • 1998
  • The opening temperature of emit heat, caloric value and decomposition hear were investigated by DSC & TGA in order to find the hazard of sanitary feed-stuff, also explosion hazard of dust was observed with electrical ignition after fodder dispersion by compressed air. Then opening temperature of emit heat of supporting gas. $O_{2}$ was much lower than inert gas. Ar. and caloric value increased 20. and the particle size of sanitary feed-stuff were appeared fire or explosion at 50/60 mesh and 60/80 mesh.

  • PDF

A Study on Noxious Gases Analysis of Polyurethane foams (Polyurethane foam의 유해가스 분석에 관한 연구)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.7-13
    • /
    • 2000
  • We had investigated thermal stability, Ignition temperature and fire gas for polyurethane foams used for manikin, cushion and interior finishing material. Decomposition of polyurethane foams with temperature was investigated using a DSC and the weight loss with temperature increase using a TGA in order to find the thermal hazard of polyurethane foams, and the ignition temperature of polyurethane foams according to species. We studied constant temperature among ignition temperature measuring methods. In addition, noxious gases for polyurethane foams according to combustion condition were analyzed using gas analyzer and GASTEC. As results, initial decomposition temperature of polyurethane foam used for interior finishing material was lower than those for manikin and cushion, and exothermic energy was higher. Ignition temperature of polyurethane foam of interior finishing material was $420^{\circ}$. All of combustion forms at $427^{\circ}$ and under were smoldering combustion, and it was combustion at $500^{\circ}$. As furnace temperature was increased, concentration of noxious gases such as carbon oxide, carbon dioxide, and hydrogen cyanide was increased. And nitrogen oxide at combustion condition($500^{\circ}$) was over 10 ppm.

  • PDF