• 제목/요약/키워드: ignition characteristics

검색결과 1,150건 처리시간 0.026초

분사기 냉각이 초저온 분무의 점화에 미치는 영향 (Effect of Injector Cooling on Ignition of Cryogenic Spray)

  • 김도헌;이진혁;구자예
    • 한국항공우주학회지
    • /
    • 제40권3호
    • /
    • pp.222-229
    • /
    • 2012
  • 점화 시의 분사기의 냉각은 분사순간의 초저온액체상태의 산화제 분무의 증기압에 영향을 미치고, 이는 연소반응에 따른 연소실 압력상승 과도단계에서 분무의 상(phase) 천이 시점을 결정하는 인자 중 하나이다. 분무의 상변화는 액체로켓 연소기의 점화특성에 큰 영향을 미치며, 액체산소/메탄 추진제를 사용하는 연료과잉 폐쇄형사이클 액체로켓엔진의 주연소기용 분사기로 사용될 수 있는 액체-기체 동축형 스월분사기에 대하여 점화초기 분사기 냉각온도에 따른 점화시험을 수행하였다. 초기 냉각온도에 따라 점화 시 산화제 분무의 액상으로의 천이시기가 달라지며, 충분한 냉각을 통해 산화제 분무의 증기압을 낮춘 경우 산화제 분무의 상 천이 시기를 나타내는 화염 quenching 현상이 일찍 나타나는 것을 확인할 수 있었다.

담뱃불 발화특성에 관한 실험적 연구 (A Experimental Study on Characteristics of the Ignition by Cigarette Light)

  • 윤인수;김병선;조원철;이태식
    • 한국재난관리표준학회지
    • /
    • 제1권1호
    • /
    • pp.81-87
    • /
    • 2008
  • 매년 감소하고 있는 금연 인구추세에도 불구하고 담뱃불은 전체 화재원인의 10% 이상을 차지하고 있다. 본 연구의 목적은 담뱃불에 의한 발화특성을 실험을 통하여 분석하는 것이다. 이를 위해 본 연구에서는 2006년 인천에서 담뱃불로 인해 발생된 것으로 추정되는 화재사건에 대한 사례를 분석하였으며, 대표적인 착화물의 사례로서 골판지, 가솔린, 래커 시너, 방수천, PVC 연질시트 및 폴리에틸렌에 대해 발화 실험을 실시였다. 실험결과 골판지의 경우 담뱃불로 인하여 발화되었으나 가솔린, 래커 시너, 방수천, PVC 연질시트 및 폴리에틸렌의 경우 담뱃불로 인해 발화되지 못 하였다. 대부분의 화재원인 조사자들이 가솔린이나 천막재가 담뱃불로 인해 발화되었을 거라고 주장해 온 것에 반해 본 연구에서는 이러한 주장이 타당성이 없을 수 있다는 것을 실험적으로 입증하였다.

  • PDF

반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(II) (A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (II))

  • 김봉석
    • 에너지공학
    • /
    • 제13권4호
    • /
    • pp.311-318
    • /
    • 2004
  • 본 연구에서는 정적연소실을 이용하여 차량용 대체연료로써 메란 및 수소첨가 메탄의 연소특성을 수소첨가율, 점화위치 및 점화방법에 따라 고찰하였다. 그 결과, 중심점화이고 수소를 첨가하지 많은 순수 메탄의 화염전파과정은 타원형으로 전파하나 수소첨가율이 증가함에 따라 화염면상에 매우 규칙적인 세포구조를 가진 불안정한 타원형화염으로 천이되었고 연소속도도 증가하였다. 또한, 벽면 및 0.5R 점화이고 수소를 첨가하지 않은 순수 메탄의 화염전파과정은 불안정한 타원형으로 전파하고 있었지만, 수소첨가율이 증가함에 따라 연소중기에 불안정한 타원형에서 평면형으로 천이 됐다가 연소말기에는 화염면 선단이 움푹 패인 매우 불규칙한 세포구조를 갖는 패기형으로 변화되었으며 연소속도도 증가하였다 한편, 세 가지 점화위치 모두에 있어서 MSCDI와 CDI사용에 따른 화염전파형태는 외견상 큰 차이는 없었지만, 동일시간에 MSCDI장치의 화염면적은 CDI의 화염면적보다 약간 더 크게 나타났다.

정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1) (A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1))

  • 박종상;이태원;하종률;정성식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine)

  • 윤승현;이두진;이창식
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased

RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine)

  • 안재현;김형모;신명철;김세원
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

고산소-저기압 환경에서 JET A1 액체연료의 최소점화에너지 측정에 관한 연구 (A Study on the Minimum Ignition Energy Measurements for Liquid Jet A1 Fuel under at Elevated Oxygen Concentrations and Reduced Atmospheric Pressures)

  • 권행준;박설현
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.88-93
    • /
    • 2017
  • In the present study, the ignition characteristics of liquid fuel were experimentally investigated. To quantify its ignitability as ignition characteristics, the minimum ignition energy (MIE) of liquid fuel was defined and measured under at the elevated oxygen concentrations and reduced atmospheric pressures which that are the most probable conditions likely to be encountered during operation of the space launch vehicle's operating process. The experimental results demonstrate that the measured MIE decreased with the increasing the oxygen concentration at given atmospheric pressures. When the atmospheric pressure was reduced from 1 atm to 0.2 atm at a fixed oxygen concentration, the measured MIE was found to vary with $P^{-2}$ but the lowest MIE was observed at 0.8 atm.

RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine)

  • 강필중;김형모;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

화염온도 제어법을 이용한 확산화염의 소화 및 점화특성 검토 (An Investigation of the Extinction and Ignition Characteristics Using a Flame-Controlling Method)

  • 오창보;이의주;황철홍
    • 한국안전학회지
    • /
    • 제26권1호
    • /
    • pp.21-26
    • /
    • 2011
  • Extinction and ignition characteristics of $CH_4$-air counterflow diffusion flame were numerically investigated using a Flame-Controlling Method(FCM). A skeletal reaction mechanism, which adopts 17 species and 58 reactions, was used in the simulation. The extinction and ignition conditions of the $CH_4$-air diffusion flames were investigated with varying the global strain rate. Upper and middle branches of S-curve for the peak temperature in the inverse of the global strain rate space were obtained with the FCM. The structures of diffusion flames in the upper and middle branches of S-curve were compared. It was found that the global strain rate was not correlated with the local strain rate well in the low global strain rate region. It is expected that the FCM is very useful to obtaining the extinction and ignition condition of diffusion flame, such as fires.