• 제목/요약/키워드: identified motor parameters

검색결과 63건 처리시간 0.03초

벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정 (Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor)

  • 박현수;조권재;최종우
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.492-501
    • /
    • 2018
  • In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.

고분자 필름 및 구리선 이종 물성을 고려한 EV모터용 헤어핀 성형 공정 해석 (Forming Simulation of EV Motor Hairpin by Implementing Mechanical Properties of Polymer Coated Copper Wire)

  • 김동춘;임윤재;백민광;이명규;오인석
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.122-128
    • /
    • 2023
  • As electric vehicles (EV) have increasingly replaced the conventional vehicles with internal combustion engines (ICE), most of automotive makers are actively devoting to the technology development of EV parts. Accordingly, the manufacturing process for power source has been also shifting from engine/transmission to EV motor/reducer system. However, lack of experience in developing the EV motor still remains as a technical challenge. In this paper, we employed the forming simulation based on finite element modeling to solve this problem. In particular, in order to increase the accuracy of the forming simulation, we introduced the elastic-plastic constitutive model parameters for polymer-copper hybrid wire by investigating the individual strain-stress curves, and elastic modulus of polymer and copper. Then, the reliability of modeling procedure was confirmed by comparing the simulated results with experiments. Finally, the identified mechanical properties and finite element modeling were applied to a hairpin forming process, which involves multiple deformation paths such as bending, pressing, widening, and twisting. The proposed numerical approach can replace common experience or experiment based trials by reducing production time and cost in the future.

하반신마비 환자의 보행기능 제어를 위한 FES하드웨어 시스템 설계에 관한 연구 (A Study on Design of FES Hardware System for Walking of Paraplegics)

  • 김근섭;김종원
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 1991
  • This paper describes and discusses the employment of HMG pattern analysis to provide upper-motor-neuron paraplegics with patient-responsive control of FES ( functional electrical stimulation) for the purpose of walker-supported walking. The use of above-lesion EMG signals as a solution to the control problem is considered. The AR(autoregressive)parameters are identified by time-varying nonstationary Kalman filler algorithm using DSP chip and classified by fuzzy theory. The control and stimuli part of the below-lesion are based on micro-processor(8031). The designed stimulator is a 4-channel version. The experiments described above have only attempted to discriminate between standing function and sit-down function A further advantge of the this system Is applied for motor rehabilitation of social readaption of paralyzed humans.

  • PDF

소형 위성 발사체 2단부 모드 시험 (Modal Test of the 2nd Stage of Small Launch Vehicle)

  • 서상현;정호경;윤세현;박순홍;장영순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2006
  • The structure of small launch vehicle can be divided into engine section and payload section. This paper introduces modal test of the payload section of small launch vehicle which is composed to satellite, PLA (Payload Adapter), VEB (Vehicle Equipment Bay), KMS (Kick Motor Support) and KM (Kick Motor). From this test, dynamic properties of the 2nd stage structure of small launch vehicle can be obtained. In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of small launch vehicle were identified.

  • PDF

매입형 영구자석 동기 전동기의 인덕턴스 리플 특성 분석 (Analysis of Inductance Variation Characteristics in Interior Permanent Magnet Synchronous Motor)

  • 이상엽;곽상엽;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.821-822
    • /
    • 2006
  • In the case of the interior permanent magnet synchronous motor (IPMSM), it is important to know the accurate machine parameters in the design step. In particular, d- and q- axis inductance are expected to have ripple characteristics, due to the mechanical structure and the degree of magnetic saturation. In this paper, this feature is expressed as inductance variation. Inductance variation of the IPMSM is calculated with finite element analysis, and the reason for inductance variation is identified. Finally the validity of this paper is verified by the comparison with the experimental results.

  • PDF

페라이드 자석 직류전동기의 치수 설계에 관한 연구 (A Study on the Dimension Design of Ferrite Magnet DC Motor)

  • 김덕근;원종수
    • 대한전기학회논문지
    • /
    • 제38권3호
    • /
    • pp.155-165
    • /
    • 1989
  • 본 논문은 페라이트 자석 직류전동기의 치수제원 및 특성계산에 필요한 설계식을 도출하고 이로부터 파라메타 서베이법을 적용한 반복계산에 의해 치수설계를 행하는 방법을 제시하였다. 그 계산결과와 공시 전동기와의 치수제원을 비교, 검토하여 다음과 같은 사실과 설계방법의 타당성을 밝혔다. (1)파라메터로 설정한 치수비 $\mathfrak$ 및 극호비 ${\alpha}_2$는 치수제원 및 전동기 성능에 밀접한 관계사 있으며, 이 값들이 합리적인 치수결정에 있어 중요한 요소가 된다. (2)페라이트 자석의 동작점 퍼미언스계수를 자속밀도비 ${\gamma}$만의 함수로 표시함으로써 자석부피의 최소화를 가능하게 하였다. (3)슬롯 내에 잇는 도체의 동손면적밀도를 고려하여 제시한 토오크 식은 페라이트 자석 직류정동기의 치수결정에 유용함을 보였다.

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.

Immediate Effects of Posteroanterior Cervical Mobilization on Pressure Pain Threshold and Gait Parameters in Patients with Chronic Neck Pain: A Pilot Study

  • Choi, Taeseok;Moon, Okkon;Choi, Wansuk;Heo, Seoyoon;Lee, Sangbin
    • 국제물리치료학회지
    • /
    • 제10권4호
    • /
    • pp.1914-1920
    • /
    • 2019
  • Background: Mobilization and cranio-cervical flexion exercise has been reported in reducing pain from cervical part and improving its motor function; also, has been represented that alleviate of neck pain and recover of neck muscles improve the normal gait performance. However, few studies have identified the effects of mobilization and exercise on pain and gait parameters with preceding issues. Objective: To examine the effects or changes of pressure pain threshold (PPT) and gait parameters in patients with chronic neck pain. Design: Cross-Sectional Clinical Trials Methods: Twenty patients with the history of neck pain (>3 months) performed the cervical mobilization and cranio-cervical flexion exercise. Gait parameters were assessed with wireless device and collected data were transmitted to the personal computer via Bluetooth. The PPT was measured posteroanterior direction at the prone position and the mean of subsequent three PPT measurements was used for the final analysis. Results: Both cervical central posteroanterior mobilization (CCPAM) (p<.000) and sling-based cranio-cervical flexion exercise (SBCCFE) (p<.000) group showed a significant increase in the PPT and the gait parameters, cadence (p<.023), was significantly increased in the CCPAM group, however slightly increased in the SBCCFE group. The comparison between the CCPAM and the SBCCFE groups after treatment did not show significant differences for the score on the PPT and gait parameters. Conclusions: This study suggests that CCPAM and SBCCFE increase PPT, cadence, and gait speed.