• Title/Summary/Keyword: identification rate

Search Result 1,294, Processing Time 0.027 seconds

Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script

  • Kumar, Rajiv;Ravulakollu, Kiran Kumar;Bhat, Rajesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.893-913
    • /
    • 2017
  • The handwriting based person identification systems use their designer's perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer's personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.

On the Use of Various Resolution Filterbanks for Speaker Identification

  • Lee, Bong-Jin;Kang, Hong-Goo;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.80-86
    • /
    • 2007
  • In this paper, we utilize generalized warped filterbanks to improve the performance of speaker recognition systems. At first, the performance of speaker identification systems is analyzed by varying the type of warped filterbanks. Based on the results that the error pattern of recognition system is different depending on the type of filterbank used, we combine the likelihood values of the statistical models that consist of the features extracting from multiple warped filterbanks. Simulation results with TIMIT and NTIMIT database verify that the proposed system shows relative improvement of identification rate by 31.47% and 15.14% comparing it to the conventional system.

Identification of Dynamic Systems Using a Self Recurrent Wavelet Neural Network: Convergence Analysis Via Adaptive Learning Rates (자기 회귀 웨이블릿 신경 회로망을 이용한 다이나믹 시스템의 동정: 적응 학습률 기반 수렴성 분석)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.781-788
    • /
    • 2005
  • This paper proposes an identification method using a self recurrent wavelet neural network (SRWNN) for dynamic systems. The architecture of the proposed SRWNN is a modified model of the wavelet neural network (WNN). But, unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. Thus, in the proposed identification architecture, the SRWNN is used for identifying nonlinear dynamic systems. The gradient descent method with adaptive teaming rates (ALRs) is applied to 1.am the parameters of the SRWNN identifier (SRWNNI). The ALRs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of an SRWNNI. Finally, through computer simulations, we demonstrate the effectiveness of the proposed SRWNNI.

Statistical Extraction of Speech Features Using Independent Component Analysis and Its Application to Speaker Identification

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.156-163
    • /
    • 2002
  • We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.

Statistical Extraction of Speech Features Using Independent Component Analysis and Its Application to Speaker Identification

  • 장길진;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.156-156
    • /
    • 2002
  • We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.

Individual Identification Using Ear Region Based on SIFT (SIFT 기반의 귀 영역을 이용한 개인 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In recent years, ear has emerged as a new biometric trait, because it has advantage of higher user acceptance than fingerprint and can be captured at remote distance in an indoor or outdoor environment. This paper proposes an individual identification method using ear region based on SIFT(shift invariant feature transform). Unlike most of the previous studies using rectangle shape for extracting a region of interest(ROI), this study sets an ROI as a flexible expanded region including ear. It also presents an effective extraction and matching method for SIFT keypoints. Experiments for evaluating the performance of the proposed method were performed on IITD public database. It showed correct identification rate of 98.89%, and it showed 98.44% with a deformed dataset of 20% occlusion. These results show that the proposed method is effective in ear recognition and robust to occlusion.

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.

Characteristics of Patients with Allergic Rhinitis through the Pattern Questionnaire Items (변증 설문지 문항을 통해 살펴 본 알레르기 비염 환자의 특성)

  • Son, Jae-Woong;Lee, Kyu-Jin;Jang, Bo-Hyeong;Jang, Soobin;Ko, Seong-Gyu;Choi, In-Hwa
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.81-90
    • /
    • 2014
  • Objective : We performed a clinical study to investigate pattern characteristics in persistent allergic rhinitis depending on Korean Medicine pattern questionnaire items as a pattern identification diagnostic tool. Method : 32 patients with persistent allergic rhinitis were asked to interview with doctor of Korean Medicine and perform the 4 pattern questionnaires(Cold-Heat Pattern, Phlegm Pattern, Yin Deficiency pattern, bloodstasis pattern). Then, we analyzed the response rate of each pattern questionnaires. Results : After diagnosis of Korean Medicine Doctor's pattern identification, 17 individual items have higher response rate, 7 of 17 items have a common tendency in allergic rhinitis. The other 8 of 10 items belong to Lung qi deficiency cold and Lung-spleen qi deficiency group, these have higher tendency of deficiency. In bloodstasis pattern questionnaires, we don't decide the tendency of patients with allergic rhinitis. Conclusion : The result may provide that we don't use Korean Medicine pattern questionnaires as a major tool in the pattern identification of allergic rhinitis. Continuous studies are needed to develop the standardized pattern identification diagnostic tool.

A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor (광학식 지문센서에서의 위조 지문 검출 방법)

  • Lee, Ji-Sun;Kim, Jae-Hwan;Chae, Jin-Seok;Lee, Byoung-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.492-503
    • /
    • 2008
  • With the recent development and increasing importance of personal identification systems, biometric technologies with less risk of loss or unauthorized use are being popularized rapidly. In particular, because of their high identification rate and convenience, fingerprint identification systems are being used much more commonly than other biometric systems such as iris recognition, face recognition and vein pattern recognition. However, a fingerprint identification system has the problem that artificially forged finger-prints can be used as input data. Thus, in order to solve this problem, the present study proposed a method for detecting forged fingerprints by measuring the degree of attenuation when the light from an optical fingerprint sensor passes through the finger and analyzing changes in the transmission of light over stages at fixed intervals. In order to prove improvement in the performance of the proposed system, we conducted an experiment that compared the system with an existing multi-sensor recognition system that measures also the temperature of fingerprint. According to the results of the experiment, the proposed system improved the forged fingerprint detection rate by around 32.6% and this suggests the possibility of solving the security problem in fingerprint identification systems.

  • PDF

Proposal of Form-Color-Pulse-Symptom Diagnostic System for Enhancement of Diagnostic Rate of 8 Principle Pattern Identification - Focusing on Cold Heat Pattern Identification - (팔강변증의 진단율 향상을 위한 형색맥증진단(形色脈證診斷)시스템 설계 - 한열변증을 중심으로 -)

  • Chi, Gyoo Yong;Lee, In Seon;Jeon, Soo Hyung;Kim, Jong Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.163-168
    • /
    • 2019
  • In order to enhance the 8 principle pattern diagnosis rate comparing with diagnostic method by self-report questionnaire on cold/heat pattern in the clinical practice, a new diagnostic method using form-color-pulse-symptom (FCPS) system is proposed. FCPS system is composed of outputs of cold/heat pattern through the calculation process of contribution degree to the cold, heat pattern and qi, blood, yin, yang deficiency patterns, based on analysis of 16 mechanisms of disease calculated by diagnostic system of oriental medicine (DSOM) first. And second component is an output of differentiated 8 principle patterns in detail through binding and calculating process with digital informations of pulse, color, form, constitution obtained by computerized measurement system. Putting together above two processes consecutively, cold-heat complex or true/false cold/heat patterns and personalized characters of cold/heat patterns of each patient can be subdivided through a computation method of determining each pattern. In conclusion, 8 principle pattern identification can be performed more accurately using FCPS system than existent self report questionnaire method. These hypothetic proposal is needed to be proven by clinical trial for the future and then the accurate numbers used in each calculational function should be revised properly.