• Title/Summary/Keyword: ideal-coupled method

Search Result 45, Processing Time 0.029 seconds

A Study on Emission Characteristics of Ar, Ne Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar, Ne 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.167-170
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an Argon, Ne discharge for pressure from 1 [mTorr] and input RF power 10 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

Hydroelastic Vibration Analysis of Two Circular Plates with Simply Supported Boundary Condition (단순지지된 두 원판의 유체연성 고유진동 해석)

  • 정경훈;이규만;박근배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.603-608
    • /
    • 2001
  • This paper deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid is filled between the two plates and the plates are simply supported along the plate edges. The proposed method is verified by the finite element analysis using commercial software with an excellent accuracy. The effect of the plate boundary conditions on the fluid-coupled natural frequency is investigated.

  • PDF

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF

Optimal Design of High Frequency Transformer for 150W Class Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.288-294
    • /
    • 2015
  • Recently, the module-integrated converter has shown an interest in the photovoltaic generation system. In this system, the high frequency transformer should be compact and efficient. The proposed method is based on the correlation characteristic between the copper and core loss to minimize the loss of transformer. By sizing an effective cross-sectional area and window area of core, the amount of loss is minimized. This paper presents the design and analysis of high frequency transformer by using the 3D finite element model coupled with DC-DC converter circuit for more accurate analysis by considering the nonlinear voltage and current waveforms in converter circuit. The current waveform in each winding is realized by using the ideal DC voltage source and switching component. And, the thermal analysis is performed to satisfy the electrical and thermal design criteria.

Modal Analysis of Conical Shell Filled with Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1848-1862
    • /
    • 2006
  • As a basic study on the fluid-structure interaction of the shell structure, a theoretical formulation has been suggested on the free vibration of a thin-walled conical frustum shell filled with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid coupled with the shell is determined by means of the velocity potential flow theory. In order to calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the effect of apex angle on the frequencies is investigated.

A Study on Neutral Atom Heating in Inductively Coupled Plasma

  • Seo, Byeong-Hun;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.178-178
    • /
    • 2012
  • Neutral atom temperature was measured by Laser Rayleigh scattering method using neutral depletion by neutral heating with ideal gas law in Inductively coupled plasma. We observed sudden pressure change when plasma is turned on and off. We analyzed mechanism of neutral heating by employing zero-dimensional neutral and ion energy balance model simultaneously. The results showed that neutral atom temperature increase with ion density. The mechanism of neutral atom heating and cooling is mainly dominated by ion-neutral collision including elastic and charge-exchange collision and by wall cooling respectively.

  • PDF

The ECBL approach for interactive buckling of thin-walled steel members

  • Dubina, Dan
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.75-96
    • /
    • 2001
  • Actual buckling curves are always characterised by the erosion of ideal buckling curves. In case of compact sections this erosion is due to the imperfections, while for thin-walled members, a supplementary erosion is induced by the phenomenon of coupled instabilities. The ECBL approach- Erosion of Critical Bifurcation Load - represents a practical and convenient tool to characterise the instability behaviour of thin-walled members. The present state-of-art paper describes the theoretical background of this method and the applications to cold-formed steel sections in compression and bending. Special attention is paid to the evaluation methods of erosion coefficient and to their validation. The ECBL approach can be also used to the plastic-elastic interactive buckling of thin-walled members, and the paper provides significant results on this line.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

A Study on Emission Characteristics of Ar Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.611-615
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, Electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. Therefore, the electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an argon discharge for pressure from 10 [mTorr] and input RF power 100 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

Liquid boundary effect on free vibration of an annular plate coupled with a liquid

  • Kyeong-Hoon Jeong
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.127-149
    • /
    • 2023
  • A theoretical method is developed to analyze the free vibration of an elastic annular plate in contact with an ideal liquid. The displacement potential functions of the contained liquid are expressed as a combination of the Bessel functions that satisfy the Laplace equation and the liquid boundary conditions. The compatibility condition along the interface between the annular plate and the contained liquid is taken into account to consider the fluid-structure coupling. The dynamic displacement of the wet annular plate is assumed to be a combination of dry eigenfunctions, allowing for prediction of the natural frequencies using the Rayleigh-Ritz method. The study investigates the effect of radial liquid boundary conditions on the natural frequencies of the wet annular plate, considering four types of liquid bounding: outer container bounded, outer and inner bounded, inner bounded, and radially unbounded. The proposed theoretical method is validated by comparing the predicted wet natural frequencies with those obtained from finite element analysis, showing excellent accuracy. The results indicate that the radial liquid bounding effect on the natural frequencies is negligible for the axisymmetric vibrational mode, but relatively significant for the mode with one nodal diameter (n =1) and no nodal circle (m' = 0). Furthermore, the study reveals that the wet natural frequencies are the largest for the plate with an inner bounded cylinder among the radial liquid boundary cases, regardless of the vibration mode.