• Title/Summary/Keyword: ice-2

Search Result 1,287, Processing Time 0.028 seconds

SPHEREx Galactic Science: Ice Evolution from Molecular Clouds to Protoplanetary Disks

  • Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2018
  • SPHEREx의 중요 임무 중 하나는 $0.75{\mu}m$$5{\mu}m$ 사이에서 $H_2O$, CO, $CO_2$, XCN, OCS, 그리고 $CH_3OH$와 같은 얼음 분자의 전천 탐사 스펙트럼을 제공하는 것이다. 이러한 얼음 분자는 성간분자운의 먼지 티끌 표면에서 생성되어 별 탄생의 필연적 산물이며, 행성이 형성되는 원시행성계원반에서 다양한 변화를 겪게 되고, 복잡한 유기분자를 합성하게 된다. 하지만 충분하지 않은 관측 자료로 인해, 얼음 분자의 진화에 대한 이해가 미약한 상태이다. 현재까지는 근적외선에서 충분히 밝은 100 여개의 배경별이나 원시성에 대해서만 얼음 스펙트럼을 관측할 수 있었다. SPHEREx를 이용한 고감도 전천 탐사 미션은 약 20,000 여개의 배경별과 원시성에 대해 얼음 분자 스펙트럼을 제공할 것이다. 이렇게 100 배 이상 늘어난 샘플 스펙트럼 수로 인해, 얼음 분자의 진화에 대해서 통계적으로 의미있는 연구가 가능해 질 것이다. 본 발표에서는 SPHEREx의 Ice Program을 소개하고, 기대되어지는 결과에 대해서 논의하고자 한다.

  • PDF

Westerly Winds in the Southern Ocean During the Last Glacial Maximum Simulated in CCM3

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.297-304
    • /
    • 2009
  • We investigated the response of the westerly winds over the Southern Ocean (SO) to glacial boundary conditions for the Last Glacial Maximum using the CCM3 atmospheric general circulation model. In response to glacial boundary conditions, the zonally averaged maximum SO westerly winds weakened 20-35% and were displaced toward the equator by 3-4 degrees. This weakening of the SO westerly winds arose from a substantial increase in mean sea level pressure (MSLP) in the southern part of the SO around Antarctica relative to the northern part. The increase in MSLP around Antarctica is associated with a marked temperature reduction caused by an increase in sea ice cover and ice albedo feedback during the glacial time. The weakened westerly winds in the SO and their equator-ward displacement might play a role in reducing the atmospheric $CO_2$ concentration by reducing upwelling of the carbon rich deep water during the glacial time.

Cold Air/Water Distribution System with Ice Storage (빙축열을 이용한 저온급기/급수 냉방 시스템)

  • Kim, K.H.;Lee, J.W.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-133
    • /
    • 1991
  • This paper presents some design guidelines for using cold air/water distribution to cool commercial and industrial buildings. Cold air /water distribution systems provide primary air/water for space conditioning at nominal temperature between $3^{\circ}C$ and $10^{\circ}C$ ($4{\sim}5^{\circ}C$ might be recommendable for better selection). By using lower temperature primary air/water equipment could be downsized, means lower first costs, and often reduce annual energy costs up to 50% less than that of the conventional ($13^{\circ}C$) system. This concept takes full advantages of the $2{\sim}4^{\circ}C$ chilled water (brine) available with ice storate systems.

  • PDF

Study for Certification of Aircraft De-icing System (항공기 제빙 시스템의 인증에 대한 연구)

  • Jun, Jonghyub
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • De-icing system is essential for any aircraft to fly in icing conditions. So there are two kinds of aircraft-those that are certificated for flight in icing conditions and those that are not. Icing certification involves a rigorous testing program, and relatively few light aircraft carry this approval. From a legal perspective, aircraft that do not have all required ice protection equipment installed and functional are prohibited from venturing into an area where icing conditions are known. There are a few kinds of de-icing system. It is necessary to review the systems in point of aircraft certification considering the operational and safety issues.

Tailored Powder Composites by Freeze Drying, Electrophoretic Deposition and Sintering

  • Olevsky, Eugene A.;Wang, Xuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.287-288
    • /
    • 2006
  • Two approaches for the fabrication of tailored powder composites with specially distributed pore-grain structure and chemical composition are investigated. Electrophoretic Deposition (EPD) followed by microwave sintering is employed to obtain functionally graded materials (FGM) by in-situ controlling the deposition bath suspension composition. $Al_2O_3/ZrO_2$ and zeolite FGM are successfully synthesized using this technique. In order to fabricate an aligned porous structure, unidirectional freezing followed by freeze drying and sintering is employed. By controlling the temperature gradient during freezing of powder slurry, a unidirectional ice-ceramic structure is obtained. The frozen specimen is then subjected to freeze drying to sublimate the ice. The obtained capillary-porous ceramic specimen is consolidated by sintering. The sintering of the graded structure is modeled by the continuum theory of sintering.

  • PDF

Structural monitoring and maintenance by quantitative forecast model via gray models

  • C.C. Hung;T. Nguyen
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • This article aims to quantitatively predict the snowmelt in extreme cold regions, considering a combination of grayscale and neural models. The traditional non-equidistant GM(1,1) prediction model is optimized by adjusting the time-distance weight matrix, optimizing the background value of the differential equation and optimizing the initial value of the model, and using the BP neural network for the first. The adjusted ice forecast model has an accuracy of 0.984 and posterior variance and the average forecast error value is 1.46%. Compared with the GM(1,1) and BP network models, the accuracy of the prediction results has been significantly improved, and the quantitative prediction of the ice sheet is more accurate. The monitoring and maintenance of the structure by quantitative prediction model by gray models was clearly demonstrated in the model.

Manganese in Seawaters of the Amundsen Sea, Antarctic (남극 아문젠해에서 해수 중 Mn의 분포 특성)

  • Jang, Dongjun;Choi, Mansik;Park, Jongkyu;Park, Kyungkyu;Hong, Jinsol;Lee, Sanghoon;Jung, Jinyoung
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.63-77
    • /
    • 2019
  • In order to investigate the behavior and seasonal variability of Mn as one of the bio-essential metals in the Amundsen sea, which is known as the most biologically productive coastal area around the Antartica, seawaters were collected using a clean sampling system for 10 stations (96 ea) in 2014 (ANA04B) and for 12 stations (139 ea) in 2016 (ANA06B) surveys of RV ARAON. Dissolved and particulate Mn concentration varied in the range of 0.15-4.43 nmol/kg and <0.01 to 2.42 nM in 2014 and in the range of 0.25-4.15 nmol/kg and 0.01-2.64 nM in 2016, respectively. From the sectional distribution of dissolved and particulate Mn, it might be suggested that dissolved/particulate Mn was provided from iceberg melting and diffusion/resuspension from sediments, respectively. Although this sea is highly productive, there was little evidence regarding the biological origin of dissolved Mn, but particulate Mn only in sea ice and offshore areas could be explained as originating from organic matters, e.g. phytoplanktons. And it could be suggested that the subsurface maximum of dissolved Mn was formed by isopycnal transport of melting materials from ice wall to offshore. Compared to early (2014) summer, temperature, salinity, biomass, dissolved and particulate Mn in late (2016) summer indicated that temporal variations might be resulted from the reduction of ice melting and mCDW flow, which induced a reduction in resuspension. In addition, in the late summer, particles including biomass were reduced, which brought about a reduction in the removal rate of dissolved Mn.

Evaluation of the Deicing Performance and Concrete Structure Effect with Various Deicing Chemicals (제설제 종류에 따른 융빙성능 및 콘크리트에 미치는 영향 평가에 관한 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung;Lee, Joo-Kwang;Chung, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.113-123
    • /
    • 2005
  • In this study, calcium chloride$(CaCl_2)$, sodium chloride (NaCl), organic acids-containing deicer(NS 40, NS 100), mixed deicier$(NaCl\;70%+CaCl_2\;30%,\;NS\;40\;70%+CaCl_2\;30%,\;NaCl\;70%+NS\;40\;30%,\;NS\;40\;70%+NaCl\;30%)$ is investigated based on the laboratory test for deicing performance, freez-thaw resistance of concrete, and corrosion rate of metal. Test items for deicing performance were ice melting and ice penetration, freezing point depressions and eutectic point, pH, thermal properties for selected deicing chemicals as well as their compatibility with concrete and metal were experimentally investigated. As a test results, in case of the use chloride-containing deicier in area that concrete structures has subjected to freez-thaw reaction in winter season, it showed that mixed deicing chemicals with optimum ratio has desirable method than use one deicing chemicals when is consider to deicing performance and effects, corrosion of steel materials, and freez-thaw resistance of concrete. When use various deicing chemicals mixed, NS40(70%)+calcium chloride(30%) showed the best effective method.

  • PDF