• Title/Summary/Keyword: ice velocity

Search Result 112, Processing Time 0.024 seconds

Effects of the Curvature on the Freezing Phenomena of a Laminar Water Flow in a Curved Channel (곡유로내 물의 층류유동에서 곡부가 결빙에 미치는 영향)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1497-1505
    • /
    • 2000
  • A numerical study is made on the ice-formation for a laminar flow in a curved channel. When the water flows through the curved channel with the walls specified below the freezing temperature, the ice layer has been formed on the curved surface, different from that of a straight channel. The fluctuation of ice layer has been predicted, considering the variation of velocity and temperature near the curved portion of channel. The study also takes into account the interaction existing between the laminar flow and the curved channel. In the solution strategy, the present study is substantially different from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. The results from this study have been mainly presented, focusing on the variation of ice layer close to the curved portion. Numerical results have been obtained parametrically by varying the curved angle and the radius of curvature of channel, in addition to the variation of Reynolds numbers and wall temperatures of channel. The results show that the curved shape of channel has the great effect on the thickness of the solidification layer. The wave of ice layer thickness appears in the vicinity of curved portion. This behavior of ice layer has been amplified as is the increasing of curved angle and the radius of curvature of channel. In addition, the ice layer becomes thin as Reynolds numbers in increasing. And also, as the wall temperature of channel increases, the width of channel becomes to be shrunk due to the growth of ice layers in the upper and lower wall of channel.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

Analysis of Absolute Sea-level Changes around the Korean Peninsula by Correcting for Glacial Isostatic Adjustment (후빙기조륙운동 보정을 통한 한반도 주변 해역의 절대해수면 변화 분석)

  • Kim, Kyeong-Hui;Park, Kwan-Dong;Lim, Chae-Ho;Han, Dong-Hoon
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.719-731
    • /
    • 2011
  • Based on the ICE-3G and ICE-5G ice models, we predicted the velocities of crustal uplift caused by Glacial Isostatic Adjustment (GIA) at 39 tide gauge sites operated by Korea Hydrographic and Oceanographic Administration (KHOA). We also divided the Korean peninsula in the ranges of $32-38.5^{\circ}N$ and $124-132^{\circ}E$ in $0.5^{\circ}{\times}0.5^{\circ}$ grids, and computed the GIA velocities at each grid point. We found that the average uplift rates due to GIA in South Korea were 0.33 and 1.21 mm/yr for ICE-3G and ICE-5G, respectively. Because the GIA rates were relatively high at ~1 mm/yr when the updated ice model ICE-5G was used, we concluded that the GIA effect cannot be neglected when we compute the absolute sea level (ASL) rates around the Korean peninsula. In this study, we corrected the ICE-5G GIA velocities from the relative sea level rates provided by KHOA and we computed the ASL rates at 13 tide gauge stations. As a result, we found that the average ASL velocity around the Korean peninsula was 5.04 mm/yr. However, the ASL rates near Jeju island were abnormally higher than the other areas and the average was 8.84 mm/yr.

Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade (풍력 블레이드의 결빙에 의한 공력특성 및 성능 변화)

  • Park, Ji-Ho;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.134-143
    • /
    • 2014
  • A significant degradation in the aerodynamic performance of wind turbine system can occur by ice accretion on the surface of blades operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, excessive vibration associated with mass imbalance, ice shedding, instrumental measurement errors, and, in worst case, wind turbine system shutdown. In this study, the effects of ice accretions on the aerodynamic characteristics of wind turbine blade sections are investigated on the basis of modern CFD method. In addition, the computational results are used to predict the performance of three-dimensional wind turbine blade system through the blade element momentum method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play significant role in the shape of ice accretion.

An Experimental Study on Freezing Behavior of NaCl and Heavy Metal Aqueous Solution Using Freeze Concentration Method (동결농축법을 이용한 염수 및 중금속 수용액의 동결거동에 관한 실험 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • Recently, waste water treatment system is developed in small and middle size to get more economic advantage. Freeze concentration system has high thermodynamic efficiency and low energy consumption, can re-use purified water and cold energy obtained from ice. This study was experimentally performed to investigate pollution containment in frozen layer by cooling wall temperature, air-bubble flow methods, initial ice-lining thickness of frozen layer in NaCl aqueous solution and the representative heavy metals, Pb and Cr aqueous solution. As the result, a decrease in the cooling wall temperature bring a higher growth rate of ice front and the more solute was involved in frozen layer. The method to inject directly air-bubble into ice-liquid interface through ring shape nozzle gave high purity of ice compared to indirect method. Ice lining in 5mm thickness resulted in frozen layer with higher purity than 1mm thickness.

Numerical Analysis of Freezing Phenomena of Water in a U-Type Tube (U자형 배관 내 결빙에 대한 해석적 연구)

  • Park, Yong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.52-58
    • /
    • 2019
  • This study numerically analyzed the icing process in a U-shaped pipe exposed to the outside by considering the mushy zone of freezing water. Numerical results showed that the flow was pulled outward due to the U-shaped bend in the freezing section exposed to the outside, which resulted in the ice wave formation on the wall of the bended pipe behind. At the same time, the formation of a corrugated ice layer became apparent due to the venturi effect caused by the ice. The factors affecting the freezing were investigated, including the change of the pipe wall temperature, the water inflow velocity, and the pipe bend spacing. It was found that, as a whole, the thickness of the freezing layer increased as the pipe wall temperature decreased. It was also found that the freezing layer became relatively thin when the inflow rate of water was increased, and that the spacing of the pipe bends did not significantly impact the change in the freezing layer.

An experimental study on ice slurry creation by injection of an aqueous solution (수용액 분사에 의한 아이스 슬러리의 제조에 관한 실험적 연구)

  • Lee, Yong-Koo;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by injection operating water to cooling plate. And at this experiment it used ethylene glycol-water solution and the concentration is 10 to 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank, brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring and a vertical circular tube with single copper plate as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 1.0 to 2.0m/s and the cooling temperature of $-17^{\circ}C$ to $-10^{\circ}C$.

A Case Study of Assessment of the Ecological Connectivity of Cross Sectional Structures in the Flowing Stream (하천 내 횡단구조물에 대한 수생태 연속성 평가 방안에 대한 연구)

  • Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.320-326
    • /
    • 2020
  • The present study aimed to assess the longitudinal connectivity owing to migrant characteristics of the target fish. The study area was Wonju-cheon Stream, and the target species were Zacco platypus and Minnows. The HEC-RAS model was used for the computation of the flow, and the ICE (Information sur la Continuite Ecologique) method was used to analyze the longitudinal connectivity. The longitudinal connectivity was assessed using the minimum overflow height, velocity, and depth of the cross sectional structure of a plunge pool and considering the swimming speed of the target fish. Simulation results indicated that the longitudinal connectivity scores for the Zacco platypus and Minnows were approximately 76 and 23, respectively.

DEVELOPMENT OF 2ND GENERATION ICE ACCRETION ANALYSIS PROGRAM FOR HANDLING GENERAL 3-D GEOMETRIES (3차원 착빙 형상 예측을 위한 2세대 시뮬레이션 코드 개발)

  • Son, Chankyu;Oh, Sejong;Yee, Kwanjung
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.23-36
    • /
    • 2015
  • The $2^{nd}$ generation ice accretion analysis program has been developed and validated for various icing conditions. The essential feature of the $2^{nd}$ generation code lies in its capability of handling general 3-D geometry and improved accuracy. The entire velocity fields are obtained based on Navier-Stokes equations in order to take the massively separated flow field into account. Unlike $1^{st}$ generation code, the droplet trajectories are calculated using Eulerian approach, which is adopted to yield appropriate collection efficiency even in the shadow region. For improved thermodynamic analysis on the surfaces, water film model and modified Messinger model are newly included in the present analysis. The ice shape for a given time step is obtained by considering the exact amount of ice accreted on the surface. Each module of the icing analysis code has been seamlessly integrated on the OpenFOAM platform. The developed code was validated against available experimental data for 2D airfoils and 3D DLR-F4. Due to the lack of experimental data, the computed results of DLR-F4 were compared with those obtained from FENSAP-ICE, which is state-of-the-art 3D icing analysis code. It was clearly shown that the present code produces comparable results to those of FENSAP-ICE, in terms of prediction accuracy and the capability of handling general 3-D geometries.