• 제목/요약/키워드: ice particle

검색결과 44건 처리시간 0.029초

항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산 (Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements)

  • 엄준식
    • 대기
    • /
    • 제30권1호
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션 (Particle-based Numerical Simulation of Continuous Ice Breaking Process around Wedge-type Model Ship)

  • ;신우진;김동현;박종천;정성엽
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.23-34
    • /
    • 2020
  • This paper covers the development of prediction techniques for ice load on ice-breakers operating in continuous ice-breaking under level ice conditions using particle-based continuum mechanics. Ice is assumed to be a linear elastic material until the fracture occurs. The maximum normal stress theory is used for the criterion of fracture. The location of the crack can be expressed using a local scalar function consisting of the gradient of the first principal stress and the corresponding eigen-vector. This expression is used to determine the relative position of particle pair to the new crack. The Hertz contact model is introduced to consider the collisions between ice fragments and the collisions between hull and ice fragments. In order to verify the developed technique, the simulation results for the three-point bending problems of ice-specimen and the continuous ice-breaking problem around a wedge-type model ship with bow angle of 20° are compared with the experimental results carrying out at Korea Research Institute of Ships and Ocean Engineering (KRISO).

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

북극해에서 입자추적 방법을 이용한 유빙 추적 연구 (Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean)

  • 박광섭;김현철;이태희;손영백
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1299-1310
    • /
    • 2018
  • 본 연구는 북극해에 분포하는 유빙의 움직임을 이해하기 위해 현장관측 자료와 입자 추적 방법을 사용하여 분포 및 이동경향을 분석하였다. 북극해에서 유빙의 움직임은 NOAA(National Oceanic and Atmospheric Administration)에서 제공하는 ITP(Ice-Tethered Profiler)의 자료 중에서 2009년부터 2018년 자료를 이용했다. 유빙의 유동은 각 연도별로 분류하고 각각의 ITP 자료를 이용하여 위치 및 속도를 분석하였다. 입자 추적은 HYCOM(Hybrid Coordinate Ocean Model)과 ECMWF(European Centre for Medium-Range Weather Forecasts)에서 제공하는 일별 해류 및 바람 자료를 사용하여 2009년부터 2018년까지의 유빙의 움직임을 모의하였다. 북극해 전역에서 유빙의 이동경향을 분석하기 위해서 현장관측 자료인 ITP자료를 입력 자료로 이용하여 북극해에서 해류와 바람과의 관계식을 계산하여 라그랑지안 입자 추적을 수행하였다. 입자 추적 시뮬레이션은 해류에 의한, 그리고 해류와 바람에 의한 영향을 고려한 두 종류의 실험을 수행하였고, 대부분의 입자는 해류와 바람의 영향을 고려한 경우에 현장관측 자료와 동일하게 재현되었다. 북극해에서 유빙의 움직임은 바람의 영향을 고려한 관계식을 이용하여 재현되었고, 이를 이용하여 특정 연도의 유빙의 이동경향을 분석하였다. 2010년의 경우 Arctic Oscillation Index(AOI)는 음의 해로 입자들은 보퍼트 환류(Beaufort Gyre)를 따라 명확하게 움직임을 보이고, 극점 인근에서는 상대적으로 더 빠른 속도를 나타낸다. 반면에 2017년의 경우 AOI는 양의 해로 대부분의 입자들은 Gyre에 크게 영향을 받지 않는 움직임을 보이며 보퍼트 해 (Beaufort Sea) 인근에서 나타나는 이동속도 또한 상대적으로 감소하였고, 극점에서의 이동속도도 감소했다. 2010년과 2017년의 계절적 특징은 2010년도의 유빙의 이동속도는 동계(0.22 m/s)에 증가되고 춘계(0.16 m/s)에 감소되며, 2017년의 경우 하계(0.22 m/s)에 증가되고 춘계(0.13 m/s)에 감소되었다. 결과적으로 입자추적 방법은 제한된 현장관측 자료를 대신하여 북극해에서 유빙의 분포 및 이동경향을 이해할 수 있는 방법으로 위성자료와 연계하여 장기적인 유빙의 탐지 및 이동경향을 이해하는 유용한 방법이 될 것이다.

물을 냉매로 하는 구형 얼음입자 제조에 관한 실험적 연구 (Experimental study on the production of spherical ice particles using water as refrigerant)

  • 신흥태;김민형;이윤표;최영돈
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.475-482
    • /
    • 1998
  • In this paper, an experimental study was conducted to investigate the performance of the spherical ice particle production system which uses the technology of water spray in a vacuum chamber for increasing the heat transfer area. As a result, following conclusions were obtained. The diffusion-controlled evaporation model agreed relatively well with experiments. The spray flow rate influences the performance of the system rather than any other factors, for example, the spray nozzle position, the nozzle number. As the spray rate increases, the system efficiency increases. It is due to the entrainment of small droplets among the spray with the exhausted vapor. Thus the system should be designed and operated to prevent the entrainment. Assuming the compressor efficiency to be 70%, the COP of the system reaches highly up to 6 at a maximum spray rate. Under the conditions, however, the rigid ice layer is obtained because ice particles bond together with increase of the spray rate. Therefore, the spray rate should be controlled properly to make the spherical ice particles.

  • PDF

얼음입자추출법을 이용한 알부민 함유 PLGA 담체의 제조 및 방출 거동 (Preparation and Release Behavior of Albumin-Loaded PLGA Scaffold by Ice Particle Leaching Method)

  • 홍금덕;서광수;김순희;김선경;강길선;신형식;김문석;이해방
    • 폴리머
    • /
    • 제29권3호
    • /
    • pp.282-287
    • /
    • 2005
  • 조직공학적 장기재생에 있어서 필수적 요소인 생분해성 담체를 제조하기 위하여 새로운 방법인 얼음입자추출법을 사용하였다. 형광이 결합된 소 혈청 알부민(bovine serum albumin-fluoiescein isothiocyanate, FITC-BSA)과 락타이드-글리콜라이드 공중합체(PLGA)를 균일하게 혼합한 후에 제조된 얼음입자를 각각 다른 양을 첨가하여 다공성의 담체를 제조하였다. 모델 약물로 이용한 알부민의 방출 실험근 pH 7.4 인산염완충액을 사용하여 $37^{circ}C$, 100 rpm조건으로 항온조에서 28일 동안 수행하였다. 알부민의 방출은 형광 분광기를 통하여 FITC의 강도에 의해 결정되었으며 알부민의 방출 거동에 따른 담체의 형태학적 변화는 전자주사현미경을 이용하여 관찰하였다. 담체를 알부민이 용해된 용액에 단순히 함침시킨 방법에 비해 알부민을 함유하여 제조한 담체의 경우에 초기 방출량이 적고 일정한 방출거동을 보였다. 또한 알부민의 농도에 따른 실험에서 농도가 증가하여도 초기 방출량은 증가하지 않음을 확인할 수 있었다. 본 실험을 통해 PLGA를 이용하여 얼음입자 추출법으로 제조한 담체는 단백질 약물의 서방화가 훌륭하여 생체조직공학적 담체로서 응용 가능함을 확인하였다. 또한, 물 등께 의한 다공물질 추출 과정이 없기 때문에 사이토카인 등과 같은 수용성 인자들의 포접이 용이하여 조직공학적 바이오장기 재생에 유효할 것으로 사료된다.

Takahashi 구름모형에서의 얼음입자 충돌효율 개선 (Implementation of Improved Ice Particle Collision Efficiency in Takahashi Cloud Model)

  • 이한아;염성수
    • 대기
    • /
    • 제22권1호
    • /
    • pp.73-85
    • /
    • 2012
  • The collision efficiency data for collision between graupel or hail particles and cloud drops that take into account the differences of particle density are applied to the Takahashi cloud model. The original setting assumes that graupel or hail collision efficiency is the same as that of the cloud drops of the same volume. The Takahashi cloud model is run with the new collision efficiency data and the results are compared with those with the original. As an initial condition, a thermodynamic profile that can initiate strong convection is provided. Three different CCN concentration values and therefore three initial cloud drop spectra are prescribed that represent maritime (CCN concentration = 300 $cm^{-3}$), continental (1000 $cm^{-3}$) and extreme continental (5000 $cm^{-3}$) air masses to examine the aerosol effects on cloud and precipitation development. Increase of CCN concentration causes cloud drop sizes to decrease and cloud drop concentrations to increase. However, the concentration of ice particles decreases with the increase of CCN concentration because small drops are difficult to freeze. These general trends are well captured by both model runs (one with the new collision efficiency data and the other with the original) but there are significant differences: with the new data, the development of cloud and raindrop formation are delayed by (1) decrease of ice collision efficiency, (2) decrease of latent heat from riming process and (3) decrease of ice crystals generated by ice multiplication. These results indicate that the model run with the original collision efficiency data overestimates precipitation rates.

IPF 조절기를 이용한 배관내 아이스 슬러리의 빙충전율 제어 (A Control of Ice Packing Factor of Ice Slurry in a Pipe using IPF Controller)

  • 권재성;이윤표;윤석만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1105-1110
    • /
    • 2008
  • An experimental study was performed to control Ice Packing Factor (IPF) of ice slurry in a pipe in a real time. This paper presented the concept that IPF can be adjusted by the amount of the solution contained to ice slurry. Based on this concept, we designed IPF controller consisting of the outlet tube providing ice slurry and the upper tube discharging only a solution through holes, and investigated the technical validity and efficiency of the controller experimentally. As a result, the original proposed IPF controller could not control IPF of ice slurry in a pipe. This is because an ice of ice slurry was drained out into not only the outlet but also the upper of the controller due to the size of the holes relatively large compared to the ice particle. Therefore, we changed the hole size of IPF controller surface using fine meshes and then, observed that IPF in a pipe was increased by $4{\sim}7$ percent when the hole size was $80{\mu}m$ and less.

  • PDF

지역냉방용 직접순환식 아이스슬러리 시스템의 현장적용 사례 (A Field Application Case of Direct Ice Slurry Transporting System for District Cooling)

  • 유호선;이상훈;이윤표
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.496-504
    • /
    • 2009
  • In order to investigate the feasibility of a direct ice slurry transporting system for the purpose of district cooling, a case study of field application is performed. The research aims include the field measurement of ice packing factor, the performance of coldness delivery, and the branching characteristics of ice slurry. Two representative types of pipe branch are dealt with in this work. For the slurry flow with ice volume fraction of 0.16 or less, the pipe blocking due to aggregation is not observed. Based on the time-wise variation of temperature in the storage tank, a calculating method of ice packing factor is newly developed, which seems to be useful when the brine concentration is unknown. It is confirmed that the mass flow rate of ice slurry per unit cooling load is markedly reduced with increasing the ice content. The pumping power also decreases, but remains unchanged for high ice fractions. The distribution of ice particle before and after branching shows a good uniformity within the range of 5% difference, but yields a unique trend depending on the flow rate.