• Title/Summary/Keyword: ice nucleating activity

Search Result 5, Processing Time 0.019 seconds

The Investigation on the Optimum Culture Conditions and the Ice Nucleating Activity of Bacterium Xanthomonas translucens KCTC 2751 (Xanthomonas translucens KCTC 2751의 최적배양과 빙핵 활성 검토)

  • Kim, Young-Mun;Kang, Sung-Il;Jang, Young-Boo;Jun, Byung-Jin;Kong, Jai-Yul
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.249-255
    • /
    • 2006
  • The optimum culture conditions for the ice nucleating activity and the cell growth of Xanthomonas translucens KCTC 2751 were investigated. The optimum initial pH and temperature for the cell growth and the ice nucleating activity were 6.5 and $25^{\circ}C$, respectively. The optimum culture medium for the ice nucleating activity was composed of 1.0% maltose, 1.4% yeast extract, 0.8% digested of gelatin, and 0.03% KCI in distilled water. Freezing operations carried out on distilled water showed that the degrees of supercooling were $-7.90^{\circ}C$ without ice nucleators, $-1.56^{\circ}C$ with silver iodide as a commercial ice nucleator, and $-1.36^{\circ}C$ when Xanthomonas translucens KCTC 2751 were added. During progressive freeze-concentration assays, the addition of Xanthomonas translucens KCTC 2751 led to lower saccharose concentrations in the crystals, while the cells led to higher saccharose concetrations in the concentrated phase.

Identification and Characterization of Pseudomonas syringae pv. syringae, a Causative Bacterium of Apple Canker in Korea

  • Seunghee, Lee;Wonsu, Cheon;Hyeok Tae, Kwon;Younmi, Lee;Jungyeon, Kim;Kotnala, Balaraju;Yongho, Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.88-107
    • /
    • 2023
  • In the present investigation, bacterial isolates from infected apple trees causing apple canker during winter were studied in the northern Gyeongbuk Province, Korea. The pathogen was identified as Pseudomonas syringae pv. syringae (Pss) through various physiological and biochemical characterization assays such as BIOLOG, gas chromatography of fatty acid methyl esters, and 16S rRNA. Bioassays for the production of phytotoxins were positive for syringopeptin and syringomycin against Bacillus megaterium and Geotrichum candidum, respectively. The polymerase chain reaction (PCR) method enabled the detection of toxin-producing genes, syrB1, and sypB in Pss. The differentiation of strains was performed using LOPAT and GATTa tests. Pss further exhibited ice nucleation activity (INA) at a temperature of -0.7℃, indicating an INA+ bacterium. The ice-nucleating temperature was -4.7℃ for a non-treated control (sterilized distilled water), whereas it was -9.6℃ for an INA- bacterium Escherichia coli TOP10. These methods detected pathogenic strains from apple orchards. Pss might exist in an apple tree during ice injury, and it secretes a toxin that makes leaves yellow and cause canker symptoms. Until now, Korea has not developed antibiotics targeting Pss. Therefore, it is necessary to develop effective disease control to combat Pss in apple orchards. Pathogenicity test on apple leaves and stems showed canker symptoms. The pathogenic bacterium was re-isolated from symptomatic plant tissue and confirmed as original isolates by 16S rRNA. Repetitive element sequence-based PCR and enterobacterial repetitive intergenic consensus PCR primers revealed different genetic profiles within P. syringae pathovars. High antibiotic susceptibility results showed the misreading of mRNA caused by streptomycin and oxytetracycline.

Ice Nucleating Activities of Ice Nucleation-Active Bacteria Sterilized with Heat, Pressure and Irradiation , and Their Thermophysical Effects on Water (가열, 고압, 방사선 처리된 빙핵활성세균의 활성 및 물의 동결특성에 미치는 영향)

  • Kim, Hyun-Jeong;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.326-336
    • /
    • 1997
  • Four ice nucleation-active bacteria (INA-bacteria), Pseudomonas syringae, Xanthomonas campestris, Escherichia coli JM109/pEIN229 and Gluconobacter oxydans/pKIN230, were treated with heat, pressure and gamma-irradiation to compare viability and their ice nucleation activity (INA) after sterilization. Gamma-irradiated INA-bacteria showed the least decrease in T90 value (the temperature at which the 90% of drops are frozen). According to cumulative INA spectra, gamma-irradiated INA-bacteria showed little decrease in class A ice nuclei $(nucleate\;H_{2}O\;at\;higher\;than\;-5^{\circ}C)$, pressurized INA-bacteria showed more than 90% decrease in class A ice nuclei, and heat-treated INA-bacteria barely showed class A ice nuclei. Differential scanning calorimetry (DSC) was used to examine the effect of INA-bacteria on the thermophysical properties of water at freezing temperature. Freezing peaks were appeared at about $11{\sim}15^{\circ}C$ higher on thermograms and enthalpies of phase change were decreased for the water containing INA-bacteria compared with the pure water, while melting peaks were not shifted. INA measured by DSC method were significantly correlated with INA measured by drop freezing method $(R^{2}>0.993,\;p<0.0001)$, indicating that DSC can be used as a new, simple and precise method for measuring INA.

  • PDF

Cryoprotective Properties of Exopolysaccharide (P-21653) Produced by the Antarctic Bacterium, Pseudoalteromonas arctica KOPRI 21653

  • Kim, Sung-Jin;Yim, Joung-Han
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.510-514
    • /
    • 2007
  • Twenty-five bacterial strains that secrete mucous materials were isolated from sediment obtained from King George Island, Antarctica. Seven of these strains proved capable of producing cryoprotective exopolysaccharides. The strain KOPRI 21653 was selected for the further study of an anti-ice-nucleating polysaccharide (ANP), which originated from a polar region. KOPRI 21653 was identified as Pseudoalteromonas arctica as the result of 16S rRNA analysis. The exopolysaccharide, P-21653, was purified completely from the KOPRI 21653 cell culture via column chromatography and protease treatment. The principal sugar components of P-21653 were determined to be galactose and glucose, at a ratio of 1:1.5, via GC-MS analysis. The cryoprotective activity of P-21653 was characterized via an E. coli viability test. In the presence of 0.1% (w/v) P-21653, the survival ratio of E. coli cells was as high as 82.6% over three repeated freeze-thaw cycles. The survival ratio decreased drastically to 71.5 and 48.1 %, respectively, in five and seven repeated cycle conditions; however, the survival ratios were greater over three (96.6-92.1%) to seven (100.5-91.6%) freeze-thaw cycles in the presence of 0.5 and 1.0% (w/v) P-21653. In addition, at much lower concentrations (0.1-1.0%), P-21653 resulted in survival ratios (83.1-98.4%) similar to those of two commercially available cryoprotectants ($V_{EG}$ plus X-1000, 92.9% and $V_{M3}$, 95.3%), which were utilized at the recommended concentrations (90%). The biochemical characteristics of exopolysaccharide P-21653 reflect that this compound may be developed as a useful cryoprotectant for use in medical applications and in the food industry.