• Title/Summary/Keyword: iOPC

Search Result 59, Processing Time 0.029 seconds

Design of Software Architecture for Integrating Messages of SECS-II and OPC (SECS-II와 OPC의 메시지 통합을 위한 소프트웨어 구조 설계)

  • Lim, Yong-Muk;Han, Jong-Sub;Kwark, Woo-Young;Kim, Woo-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.675-678
    • /
    • 2008
  • 최근 반도체 장비는 충분한 네트워크 성능과 유지 관리 기능을 자체적으로 내장하고 있으며, 자동화 네트워크 구성을 위한 통신규약 및 메시지로 SECS-I, SECS--II, HSMS와 PLC장비의 OPC등이 있다. 하지만 각 통신규약 및 메시지 형태가 상이하여 통합 관리 및 모니터링이 어려운 실정에 있다. 따라서 본 논문에서는 반도체 산업장비의 다양한 통신규약중 사용도가 높은 SECS-II와 OPC에서 메시지를 추출하고 통합된 메시지를 작성하기 위한 방법 및 소프트웨어 구조를 제시한다. 이러한 시스템을 통해서 생산 효율 및 가동률을 높이고, 고장 진단/장애요소 제거 등 산업 현장에서 발생할 수 있는 문제점을 개선 할 수 있는 기반 기술을 마련한다.

The Effect of Blaine and SO3 Contents of OPC on Shotcrete Binder with Calcium Aluminate Accelerator (OPC의 분말도 및 SO3 함량이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, Bong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.78-85
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of OPC fineness and SO3 content on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized OPC as a binder for shotcrete.

Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material

  • Al-Amoudi, Omar S. Baghabra;Ahmad, Shamsad;Khan, Saad M.S.;Maslehuddin, Mohammed
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • This paper reports an experimental investigation conducted to evaluate the durability performance of concrete mixtures prepared utilizing blends of Type I Portland cement (OPC) and natural pozzolans (NPs) obtained from three different sources in Saudi Arabia. The control concrete mixture containing OPC alone as the binder and three concrete mixtures incorporating NPs were prepared keeping water/binder ratio of 0.4 (by weight), binder content of $370kg/m^3$, and fine/total aggregate ratio of 0.38 (by weight) invariant. The compressive strength and durability properties that included depth of water penetration, depth of carbonation, chloride diffusion coefficient, and resistance to reinforcement corrosion and sulfate attack were determined. Results of this study indicate that at all ages, the compressive strength of NP-admixed concrete mixtures was slightly less than that of the concrete containing OPC alone. However, the concrete mixtures containing NP exhibited lower depth of water penetration and chloride diffusion coefficient and more resistance to reinforcement corrosion and sulfate attack as compared to OPC. NP-admixed concrete showed relatively more depth of carbonation than OPC when subjected to accelerated carbonation. The results of this investigation indicates the viability of utilizing of Saudi natural pozzolans for improving the durability characteristics of concrete subjected to chloride and sulfate exposures.

Fundamental Properties of MgO Base Ceramic Mortar for Concrete Repair Material (MgO계 세라믹 모르타르를 활용한 콘크리트 보수재료의 기초물성평가)

  • Park, Joon-Woo;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • The fundamental property of magnesia phosphate cement (MPC) for concrete repair material was investigated in this research. For mechanical properties, setting time, compressive strength and tensile/flexural bond strength were measured, and hydration products were detected by X-ray diffraction. The specimens were manufactured with dead burnt magnesia and potassium dihydrogen phosphate was admixed to activate the hydration of magnesia and a borax was used as a retarder. To observe the pore structure and ionic permeability of MPC mortar, mercury intrusion porosimetry was performed together with rapid chloride penetration test (RCPT). As a result, time to set of Fresh MPC mortar was in range of 16 to 21 min depend on the M/P ratio. Borax helped delaying setting time of MPC to 68 min. The compressive strength of MPC with M/P of 4 was sharply developed to 30 MPa within 12 hours. The compressive strength of MPC mortar was in range of 11.0 to 30.0 MPa depend on the M/P ratio at 12 hours of curing. Both tensile and flexural bond strength of MPC to old substrate (i.e. MPC; New substrate to OPC; Old substrate) were even higher than ordinary Portland cement mortar (i.e. [OPC; New substrate] to [OPC; Old substrate]) does, accounting 19 and 17 MPa, respectively. The total pore volume of MPC mortar was lower than that of OPC mortar. MPC mortar had the entrained air void rather than capillary pore. The RCPT showed that total charge passed of OPC mortar had more than that of MPC mortar, which can be explained by the pore volume and pore distribution.

Research on Fuzzy I-PD Optimal Preview Control

  • Wang, Dong;Aida, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.483-483
    • /
    • 2000
  • The Fuzzy Preview Control (FPC) design methodology using I-PD Preview Control (IPC) and Optimal Preview Control (OPC)[6] are discussed in this paper. First we show a new fuzzy controller with single input single output, and build a relationship between it and the I-PD Control proposed by Kitamari, as well as Optimal Control with some specific equations. We also give the stability analysis with Lyapunov theorem. On this way, we can design a Fuzzy I-PD Controller (FIC) very easier and more effective. Then, preview control element design methodology of FCP was given according to IPC and OPC. Third, to make the system more rapidly and more little overshooting, two factors are given to adjust the controller's properties. At last, the performance of FPC is revealed via computer simulation using a nonlinear plant.

  • PDF

Development of Integrated Water Operation System through Engineering Standardization (표준화를 통한 통합형 수(水)운영시스템의 개발)

  • Han, Geung-Jeon;Kim, Jin-Mun;Jeon, Hwa-Sung;Lee, Kyung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.602-609
    • /
    • 2011
  • In this paper, we standardized the water operation system picture, process control logic, realtime database and system configuration. All aspects, including monitoring & controlling processes, symbols such as pumps, valves and pipes were standardized. As a result we have developed a specialized Integrated water operation system, iWater. We have developed a variety of advanced application programs that are essential for water treatment systems, such as IWS (Integrated Warning system), MBO(modbus opc)/LSE(LS ethernet) driver, video monitoring, self diagnosis system, network monitoring, etc. IWS prevents water supply accidents by using a variety of alarms and warning messages. Drivers have the flexibility to communicate with other 3rd party systems. We expect that iWater will eliminate any concerns regarding water-related issues while also promoting the production and fair distribution of clean water.

Corrosion-Resisting Performance Evaluation of Concrete Mixed with Fly-Ash (플라이애시 혼합 콘크리트의 철근 부식 저항성능 평가)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • The role of fly ash in concrete become impotent with finding the characteristics of fly ash in which it is used as cement replacement material. In this paper, corrosion test results obtained by two test methods such as the long-term exposure corrosion test and the accelerated corrosion test method, were compared to investigated the corrosion resistance between fly ash concrete and normal concrete. Corrosion initiation time was measured in two types of concrete, i.e., one mixed with fly ash(FA) and the other without admixture(OPC). The accelerated corrosion test was carried out by four case, i.e., two samples is a cyclic drying-wetting method combined without carbonation(case 1) and combined with carbonation(case 2), and the other two samples is a artificial seawater ponding test method combined without carbonation(case 3) and combined with carbonation(case 4). Whether corrosion occurs, it was measures using half-cell potential method. The ponding test combined without carbonation was most effective in accelerating corrosion time of steel bars. The results indicated that the corrosion of rebar embedded in concrete occurred according to the order of OPC, FA. The delay relative ratio of corrosion obtained by corrosion initiation time between FA and OPC is 1.04 to 1.27. Consequently, fly ash concrete as the age increases its corrosion resistance was improved compared with OPC concrete.

An Experimental Study on the Improvement of Freezing-Thawing Resistance of Gutter Concrete (측구 콘크리트의 동결융해 저항성능 개선을 위한 실험적 연구)

  • Lee, Hoi-Keun;Sohn, Yu-Shin;Kim, Han-Jun;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.577-580
    • /
    • 2006
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete used for gutter of the road. Mixtures were proportioned with the three level of water-binder ratio (W/B), 0.58, 0.53, and 0.48, and two binder compositions corresponding to Type I cement without any supplementary cementitious materials (OPC) and Type I cement with 30% blast-furnace slag replacement (Slag30). Also, two different solutions of calcium chloride and water that contains 0 and 8g of anhydrous calcium chloride in each 100 mL of solution, respectively, were used to evaluate their effect on the frost durability resistance. Test results showed that the Slag30 mixture exhibited higher durability factor and lower mass loss values than those made with OPC. Among the mixture tested in this work, the mixtures (OPC and Slag30) made with a relatively higher W/B of 0.58 exhibited large amount of the de-icing salt scaling regardless of calcium chloride concentration. Finally, the use of slag can be used effectively in terms of economy and frost durability of the concrete designated for gutter.

  • PDF

Resistance to Sea Water of Hardened Cement with Calcium Sulfoaluminate Type Expansive Additives(I) (칼슘 설포알루미네이트계 팽창재를 혼합한 시멘트 경화체의 내해수성(I))

  • 전준영;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2003
  • Hardened cement pastes of OPC which contains 10 wt% CSA type expansive additives were immersed in aqueous solution of 10 wt% MgS $O_4$.7$H_2O$ and then investigated by compressive strength, XRD. SEM and DSC etc.. According to the results including the hydration products and the microstructure of the hardened paste, the case of CSA type expansive additives[No. 6(C/(equation omitted) : 2.29, A/(equation omitted) : 0.16)] prepared from raw materials increased the resistance to $Mg^{2+}$, S $O_4$$^{2-}$ ion diffusion than that of OPC paste due to the densification by the formation of fine ettringite in the first stage and the hydrates according to $\beta$-C$_2$S hydration in the late period.

Flexural bond strength behaviour in OPC concrete of NBS beam for various corrosion levels

  • Shetty, Akshatha;Venkataramanaa, Katta;Babu Narayan, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.81-93
    • /
    • 2014
  • Corrosion is one of the primary reasons why structures have limited durability. The present investigation is carried out to study the behavior of RC (Reinforced Concrete) structural members subjected to corrosion. Experimental investigations were carried out on National Bureau of Standard (NBS), RC beam specimens made of Ordinary Portland Cement (OPC) concrete. Load versus deflection behaviour was studied for different levels of corrosion i.e., 2.5%, 5%, 7.5% and 10%. It is observed that for every percentage increase in corrosion level, there is about 1.6% decrease in load carrying capacity. Also as the amount of corrosion increases there is a reduction in bond stress.