• Title/Summary/Keyword: iNOS(inducible nitric oxide synthase)

Search Result 860, Processing Time 0.03 seconds

Effect of Sanyeoleumja on Inflammatory Response of RAW 264.7 Cells (RAW 264.7 cell의 염증반응에 대한 산열음자(散熱飮子)의 항염증 효과)

  • Kim, Tae Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • Sanyeoleumja (SY) is the traditional Korean medicinal prescription for the treatment of inflammatory diseases of eyes. In this study, the anti-inflammatory effects of SY water extract were investigated. To measure the anti-inflammatory effects of SY, we examined the productions of inflammatory factor including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), interleukin-1β (IL-1β) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. SY inhibited NO and PGE2 production in a dose dependent manner and decreased the protein and mRNA expression of iNOS and COX-2. Also, SY decreased the mRNA expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β). In conclusion, SY downregulated LPS-induced inflammatory factor productions, which could be a clinical basis for inflammatory diseases.

Nitric Oxide Generation from Peritoneal Macrophages by Human Chorionic Gonadotropin (사람 융모 성선 자극 호르몬에 의한 복강 대식세로로부터 산화질소의 발생)

  • Lee, Eun-Hee;Shin, Tae-Yong;Kim, Hyung-Min
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.365-369
    • /
    • 1997
  • Human chorionic gonadotropin (hCG) is a placental hormone and is involved in maintenance of the corpus luteum during pregnancy. In the present study, effect of hCG on nitiric ox ide (NO) generation from peritoneal macrophage was examined. hCG ahd no effect on NO generation by itself, whereas recombinant interferon- ${\gamma}$ (rIFN-${\gamma}$) alone had modest activity. When hCG was used in combination with rIFN-${\gamma}$, there was a marked cooperative induction of NO generation in a dose-dependent manner. The optimal effect of hCG on NO generation was shown at 6 hr after treatment with rIFN-${\gamma}$. Furthermore, northern blot analysis of showed that hCG increased the expression of inducible NO synthase(iNOS) gene. These results suggest that hCG induces NO generation from macrophages by increasing the expression of iNOS gene.

  • PDF

Constituents of Pyrus pyrifolia with Inhibitory Activity on the NO Production and the Expression of iNOS and COX-2 in Macrophages and Microglia

  • Yoo, Ji-Hye;Yang, Ki-Sook
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2012
  • It is well known that inflammation is associated with neurodegenerative disorders, including Alzheimer' disease, Parkinson's disease and ischemia. Nitric oxide (NO), a pro-inflammatory mediator, is produced by inducible NO synthase (iNOS) in microglia as well as macrophages and appears to account for neurodegeneration. In this study, we aimed to isolate NO inhibitors from Pyrus pyrifolia by activity guided purification. As a result, we identified daucosterol and ${\beta}$-sitosterol, which have not been isolated from this plant before. This article also describes NO inhibitory activities of the methanol extract of Pyrus pyrifolia fruit and the isolated compounds from this, which are lupeol, betulin, betulinic acid, ${\beta}$-sitosterol and daucosterol, in LPS-activated RAW 264.7 and BV2 cell lines. Western blot analysis was performed to clarify the underlying mechanism of NO inhibition in the two cell lines.

Nitric Oxide: The Pathophysiological Roles and Clinical Implications in Circulatory System (순환계에서 Nitric Oxide의 생리-병리학적 역할과 그 임상적 의의)

  • Lee, K.Y.
    • Journal of Yeungnam Medical Science
    • /
    • v.13 no.2
    • /
    • pp.159-172
    • /
    • 1996
  • 대기오염물질이면서 동시에 생체내 화학반응의 산물이기도 한 nitric oxide(NO)는 그 생체내 분포가 광범위하고 생리적 역할이 다양하여, 최근의 생명과학 분야에서 가장 크게 주목받는 몇가지 연구대상 중 하나이다. 세포에서의 NO 산생은 nitric oxide synthase (NOS)에 의해 촉매되는데, 이들은 brain form (bNOS, neuronal; nNOS, NOS I), inducible form (iNOS), 및 endothelial form(eNOS)로 구분되는데, 이중 bNOS(nNOS)와 eNOS는 inducible form에 대비되는 constitutive form(cNOS)에 해당하므로 각각 ncNOS 와 ecNOS로도 불리운다. NOS는 아미노산인 L-arginine을 산소와 결합시켜 L-citrulline으로 변환시키면서 NO를 유리하고, 이 NO는 세포내의 guanylate cyclase를 활성화하여 cyclic GMP를 생산하거나, superoxide(O2-) 및 수소이온과 차례로 결합하여 반응성이 매우 높은 수산화기(-OH)를 발생시켜 세포독작용을 유발하기도 한다. 정상상태에서 뇌혈관내피세포의 ecNOS로 부터 유리된 NO는 혈관을 확장시켜 신경세포에 대한 산소공급을 원활히 유지해 주지만, 순환장애를 일으켰을 때는 뇌조직내의 iNOS로부터 대량의 NO가 유출되어 신경세포의 손상을 가져온다. 호흡기에서는 NO가 기도평활근을 이완시키고 폐혈류를 개선하므로, 미숙아나 성인의 호흡장애시에 소량의 NO를 흡입시키면 oxygenation을 호전시킬 수 있다. 그러나 대기오염이나 흡연 등으로 대량의 NO를 흡입할 경우 치명적인 폐부종이나 methemoglobin혈종을 일으킬 수 있다. 순환계에서는 cNOS가 혈관을 확장시켜 조직의 혈류를 유지하는데 일익을 담당한다. 세균내 독소(lipopolysaccharide; LPS)나 각종 명역조절물질들이 혈관내피세포와 혈관평활근세포로 부터 과다한 NO를 유리시키면 혈압이 급격히 떨어져 순환허탈상태에 빠지게 된다. 심장에서는 관상혈관 내피세포의 eNOS가 심근의 혈류를 유지해 주지만 허혈이나 세균내독소 또는 면역조절물질 등에 의하여 심근세포나 침윤된 대식세포의 iNOS로 부터 과량의 NO가 유리되면 심근세포의 손상이 초래된다. 신장에서는 내피세포의 cNOS에 의하여 사구체여과가 조절되고 있는데, 세균내독소나 면역 조절물질 등에 의하여 사구체관막세포(mesangial cell)등의 iNOS로 부터 과량의 NO가 유리되면 신조직과 사구체의 손상을 초래한다. 위와 같이 대부분의 장기에서 ecNOS는 조직의 혈류를 유지하는 역할을 하며, iNOS는 애초 세균 등 침입자에 대한 세포독작용이 그 존재 목적이라고 풀이할 수 있겠으나 일종의 부작용으로 자체조직의 손상을 초래하게 되는 것으로 본다. 따라서 NO와 관련된 각종 병변의 치료를 위해서는 NOS의 비선택성 억제제인 arginine 유도체 보다는 iNOS에 대한 선택적 억제제인 S-methylisothiourea(SMT), aminoethylisothiourea(AETU), aminoguanidine (AMG), agmatine, L-canavanine, transforming growth factor b1(TGF-b1) 등의 사용을 검토해 보는 것이 타당할 것으로 사료된다.

  • PDF

Anti-inflammatory Effect of Scopoletin in RAW264.7 Macrophages (대식 세포인 Raw264.7 cell에서 scopoletin의 항염증 효과)

  • Lee, Su-Gyeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1377-1383
    • /
    • 2015
  • Scopoletin is a component of several plant such as Erycibe obtusifolia, Aster tataricus, Foeniculum vulgare and Brunfelsia grandiflora. It was reported to have anti-angiogenesis and anti-allergy effects. In this study, the anti-inflammatory effect of scopoletin was investigated in Raw264.7 cells, mouse macrophages. The effects of scopoletin on phagocytosis and nitric oxide (NO) production were investigated in lipopolysaccharide (LPS)-induced inflammatory responses. It was observed that scopoletin exerted inhibitory effects on both phagocytosis and NO production. In addition, scopoletin decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) which were related to NO and prostaglandin E2 (PGE2) production. In particular, the expression of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression levels of IL-1β, IL-6 were remarkably decreased by treatment with scopoletin. Furthermore, the content of TNFα produced by macrophage was decreased in the presence of scopoletin at 8 hr. These results indicate that the anti-inflammatory effect of scopoletin could exert by inhibiting the expression of pro-inflammatory cytokines in Raw264.7 cells stimulated with LPS. The above results suggest scopoletin could be a new remedial agent for anti-inflammation through inhibition of iNOS, COX-2, IL-1β, IL-6 and TNF-α expressions as well as supression of phagocytosis and NO production.

Inhibitory Effect of Rosa davurica Pall. on LPS-mediated Nitric Oxide Productionvia NF-κB signaling (NF-κB signaling을 통한 Rosa davurica Pall.의 NO 생성 저해 효과)

  • Soon Pyo Kwon;Sun Ryung Lee
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.50-55
    • /
    • 2023
  • This study was designed to determine the activities of Rosa davurica Pall. leaf extract and their regulatory mechanisms in macrophage inflammation. Anti-inflammatory potential of Rosa davurica Pall. leaf extract was evaluated by measuring the nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) synthesis in lipopolysaccharide (LPS)-treated macrophage Raw 264.7 cells. Rosa davurica Pall. leaf extract potently inhibited LPS-induced NO release in a dose dependent manner. However, cell viability decreased to about 50% at high dose of 500 ㎍/ml, resulting in cytotoxicity. LPS-induced iNOS protein expression was also reduced significantly after treatment with Rosa davurica Pall. leaf extract. Furthermore, extract of Rosa davurica Pall. attenuated LPS-mediated phosphorylation of IκB and nuclear factor (NF-κB). Suppression of NF-κB signaling by treatment with PDTC, an NF-κB specific inhibitor, accelerated the inhibition of NO production and iNOS protein expression. These results suggest that Rosa davurica Pall. exhibits the anti-inflammatory potential in LPS-induced macrophage inflammation, partly through inhibition of NO production by down-regulation of NF-κB signaling.

Inhibition of LPS-induced iNOS, COX-2 Expression and Cytokines Production by Fupenjic Acid in Macrophage Cells (Fupenjic Acid의 대식세포에서 LPS에 의해 유도되는 iNOS와 COX-2 발현 및 Cytokine들의 생성 저해 효과)

  • Yun, Chang-Hyeon;Shin, Ji-Sun;Park, Hee-Juhn;Park, Jong-Hee;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • In this study, we investigated the anti-inflammatory effects of fupenjic acid (FA) isolated from the Potentilla discolor in both RAW 264.7 and mouse primary peritoneal macrophage cells. FA pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2(PGE_2)$ productions in the lipopolysaccharide (LPS)-induced RAW 264.7 and mouse primary peritoneal macrophage cells. Consistent with these observations, Western blot and RT-PCR analyses revealed that FA inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels. In addition, FA reduced the release of tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and interleukin-6 (IL-6). These results suggest that the down regulation of iNOS and COX-2 expression and TNF-$\alpha$ and IL-6 production by fupenjic acid are responsible for its anti-inflammatory effects.

Expression of nitric oxide synthase isoforms and N-methyl-D-aspartate receptor subunits according to transforming growth factor-β1 administration after hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저산소 허혈 뇌손상에서 Transforming Growth Factor-β1 투여에 따른 Nitric Oxide Synthase 이성체와 N-methyl-D-aspartate 수용체 아단위의 발현)

  • Go, Hye Young;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.594-602
    • /
    • 2009
  • Purpose : Transforming growth factor (TGF)-${\beta}1$ reportedly increases neuronal survival by inhibiting the induction of inducible nitric oxide synthase (NOS) in astrocytes and protecting neurons after excitotoxic injury. However, the neuroprotective mechanism of $TGF-{\beta}1$ on hypoxic-ischemic (HI) brain injury in neonatal rats is not clear. The aim of this study was to determine whether $TGF-{\beta}1$ has neuroprotective effects via a NO-mediated mechanism and N-methyl-D-aspartate (NMDA) receptor modulation on perinatal HI brain injury. Methods : Cortical cells were cultured using 19-day-pregnant Sprague-Dawley (SD) rats treated with $TGF-{\beta}1$ (1, 5, or 10 ng/mL) and incubated in a 1% O2 incubator for hypoxia. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 h of hypoxic exposure (7.5% $O_2$). $TGF-{\beta}1$ (0.5 ng/kg) was administered intracerebrally to the rats 30 min before HI brain injury. The expressions of NOS and NMDA receptors were measured. Results : In the in vitro model, the expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS) increased in the hypoxic group and decreased in the 1 ng/mL $TGF-{\beta}1-treated$ group. In the in vivo model, the expression of inducible NOS (iNOS) decreased in the hypoxia group and increased in the $TGF-{\beta}1$-treated group. The expressions of eNOS and nNOS were reversed compared with the expression of iNOS. The expressions of all NMDA receptor subunits decreased in hypoxia group and increased in the $TGF-{\beta}1$-treated group except NR2C. Conclusion : The administration of $TGF-{\beta}1$ could significantly protect against perinatal HI brain injury via some parts of the NO-mediated or excitotoxic mechanism.

Doxorubicin Inhibits the Production of Nitric Oxide by Colorectal Cancer Cells

  • Jung, In-Duk;Lee, Jang-Soon;Yun, Seong-Young;Park, Chang-Gyo;Han, Jeung-Whan;Lee, Hyang-Woo;Lee, Hoi-Young
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.691-696
    • /
    • 2002
  • Doxorubicin (DOX) is an active and broad spectrum chemotherapeutic agent. Increased inducible nitric oxide synthase (NOS) expression and/or activity have been reported in several human tumors. While the relationship between DOX treatment and the enzymatic activity of endothelial NOS has been well characterized, little is known about the effects of DOX on the expression of iNOS in human cancer cells. In the present study, we characterized the effects of DOX on the nitric oxide (NO) production by colorectal cancer cells, DLD-1. IFN-${\gamma}$/IL-1$\beta$ (CM) increased the production of NO, whereas pretreatment of DOX inhibited the production of NO in response to CM in a dose dependent manner. The increased expressions of iNOS mRNA and protein by CM were completely blocked by DOX without affecting the iNOS mRNA stability. However, DOX activated nuclear factor-kB (NF-kB) in response to CM. Furthermore, the expression of inhibitor kB$\alpha$ was reduced by DOX in a dose dependent manner. Collectively, DOX inhibited the production of NO by DLD-1 cells, which is not linked to well known transcription factor, NF-kB. Therefore, further studies on the possible mechanisms of inhibitory effects of NO production by DOX would be worth pursuing.

Inhibition of Nitric Oxide Production by Coumarins from Peucedanum japonicum in LPS-Activated RAW 264.7 cells (갯기름나물의 쿠마린에 의한 RAW 264.7 세포주의 Nitric Oxide 생성 저해활성)

  • Choi, Hee-Cheol;Rho, Tae-Cheol;Kim, Bo-Yeon;Ko, Hack-Ryong;Oh, Won-Keun;Seong, Chang-Keun;Mheen, Tae-Ick;Ahn, Jong-Seog;Lee, Hyun-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 1999
  • During the screening for inhibitors of nitric oxide production in LPS-activated macrophage, RAW 264.7 cells. Five coumarins were isolated from chloroform extract of the root of Peucedanum japonicum. They were identified as praeruptorin A (1), xanthotoxin (2), psoralen (3), isopimpinellin (4), bergapten (5) on the basis of spectroscopic methods. The $IC_{50}$ values for nitrite production by activated macrophages were about $1.5\;{\mu}g/ml$ (1), $0.3\;{\mu}g/ml$ (2), $1.0\;{\mu}g/ml$ (3), $25\;{\mu}g/ml$ (4), $25\;{\mu}g/ml$ (5), respectively. However, the inducible nitric oxide synthase (iNOS) was not inhibited by treatment with these compounds. Their inhibitory effect on nitric oxide production was resulted from the supperssion of iNOS expression.

  • PDF