• Title/Summary/Keyword: iNOS(inducible nitric oxide synthase)

Search Result 860, Processing Time 0.03 seconds

Anti-inflammatory Effect of the Hot Water Extract from Sasa quelpaertensis Leaves

  • Hwang, Joon-Ho;Choi, Soo-Yoon;Ko, Hee-Chul;Jang, Mi-Gyeong;Jin, Young-Jon;Kang, Seong-Il;Park, Ji-Gweon;Chung, Wan-Seok;Kim, Se-Jae
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.728-733
    • /
    • 2007
  • Bamboo grass, Sasa quelpaertensis, is a native plant to Jeju Island, Korea. The leaves of Sasa plants are widely used in traditional Korean medicine to treat inflammation-related diseases. We investigated the effect of hot water extract from Sasa quelpaertensis leaves (HWE-SQ) on nitric oxide (NO) production and nuclear $factor-{\kappa}B\;(NF-{\kappa}B)$ activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. HWE-SQ inhibited LPS-induced NO production and inducible NO synthase (iNOS) protein expression in a dose-dependent manner. Reporter gene assays indicated that HWE-SQ decreases LPS-induced $NF-{\kappa}B$ transcriptional activation. However, HWE-SQ did not affect the phosphorylation and degradation of inhibitory ${\kappa}B{\alpha}\;(1{\kappa}B{\alpha})$. HWE-SQ also directly inhibited iNOS enzyme activity in a dose-dependent manner. These results suggest that HWE-SQ suppresses NO synthesis in macrophages by attenuating $NF-{\kappa}B-mediated$ iNOS protein expression and inhibiting iNOS enzymatic activity, thereby implicating a mechanism by which HWE-SQ is able to ameliorate inflammation-related diseases by limiting excessive or prolonged NO production in pathological events.

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.

Effects of Dimethoxycurcumin, a Synthetic Curcumin Analogue, on Nitric Oxide Production in RAW264.7 Macrophage (Dimethoxycurcumin 및 curcumin 합성유도체가 RAW264.7 대식세포의 nitric oxide 생성에 미치는 효과)

  • Park, Seong-Heak;Shin, Byung-Cheul;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.1
    • /
    • pp.95-110
    • /
    • 2008
  • 목 적 : 급성 및 만성 염증 질환은 iNOS에 의해서 생성된 과량의 NO와 관련이 있다. 따라서 이러한 질병 치료를 목적으로 NO 생성 억제물질 또는 iNOS 발현 차단물질을 개발할 가치가 있다. 본 연구는 대사 안정성을 개선시킨 dimethoxycurcumin (DiMC)이 활성화된 대식세포에서 NO 생성 및 iNOS 발현을 제어할 수 있는지 조사하였다. 방 법 : RAW264.7 세포를 DiMC (양쪽 방향성 고리에 각각 2개의 methoxy group을 가짐), curcumin (양쪽 방향성 고리에 각각 1개의 methoxy group을 가짐), bis-demethoxycurcumin (양쪽 방향성 고리에 methoxy group이 없음; BDMC) 및 tetrahydrocurcumin (양쪽 방향성 고리에 각각 1개의 methoxy group을 가지고 있지만 중앙 7개 탄소 사슬에 이중결합이 없음; THC)로 각각 전처리한 후에 LPS로 자극하였다. 이들 전처리 물질의 효과를 비교하기 위하여, NO 생성, iNOS 발현, NF-kB p65 인산화 및 p65 DNA-binding 활성을 조사하였다. 결 과 : DiMC, curcumin 및 BDMC는 NO 생성, iNOS 발현 및 NF-kB 활성을 억제하였으며, 그 세기에 있어서 DiMC가 가장 크게 관찰되었고 그 다음 curcumin 그리고 BDMC 순으로 관찰되었다. THC는 어떠한 활성도 보이지 못했다. 결 론 :DiMC는 NO 생성 억제, iNOS 발현 차단 및 NF-kB 비활성을 유도할 수 있음을 알 수 있었다. 이러한 효과는 연속된 이중결합 및 methoxy group의 증가와 관련이 있는 것으로 판단된다.

Inhibitory Effect of Hyeonggaeyeongyo-tang Water Extract on production of Nitric Oxide, IL-6 and Expression of iNOS, COX-2 in LPS - Activated Raw 264.7 Cells (형개영교탕(荊芥蓮翹湯)이 lipopolysaccharide로 유도된 nitric oxide의 생성 및 iNOS와 COX-2의 발현, cytokine에 미치는 영향)

  • Kim, Min-Ji;Lee, Jong-Rok;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.491-497
    • /
    • 2007
  • Hyeonggaeyeongyo-tang (HYT; Jingjielianqiao-tang), is known to be effective in lowering wind-heat blended as a pathogen of kidney. HYT has been traditionally used for the treatment of a syndrome in kidney meridian, due to invasion of pathogenic wind and heat. Nowadays, this prescription is used to treat diseases marked by excessive wind and heat in the kidney meridian, such as acute otitis media, empyema, hypertrophic rhinitis, nasal bleeding, nasal obstruction, acne and tonsillitis. The present study was conducted to evaluate the effect of HYT on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. After the treatment of HYT water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Cyclooxygenase-2 (COX-2_ and inducible nitric oxide synthase (iNOS) were determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. The production of No was significantly inhibited by pre-treatment (1h) with HYT(0.1-0.3 mg/ml) on LPS-activated Raw264.7 cells. The expression of iNOS and COX-2 protein were up-regulated by LPS, but the increased levels of iNOS and COX-2 were inhibited by pre-treatment of HYT (0.3-1.0 mg/ml), respectively. And the level of interleukin-6 (IL-6), cytokine released from macrophage, was reduced by HYT pre-treatment (0.3-1.0 mg/ml). Thus, the present data suggest that HYT may play an important role in adjunctive therapy in Gram-negative bacterial infections.

Nitric Oxide Prevents the Bovine Cerebral Endothelial Cell Death Induced by Serum-Deprivation

  • Kim, Chul-Hoon;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.515-521
    • /
    • 1997
  • Endothelial cells play a central role in the inflammatory processes, and activation of nuclear factor kappa B ($NF-_{\kappa}B$) is a key component in that inflammatory processes. Previously, we reported that tumor necrosis factor alpha($TNF{\alpha}$) had protective effect of cell death induced by serum deprivation and this protection was related to $NF-_{\kappa}B$ activation. Inducible nitric oxide synthase (iNOS) is a member of the molecules which transcription is regulated mainly by $NF-_{\kappa}B$. And the role of nitric oxide (NO) generated by iNOS on cell viability is still controversial. To elucidate the mechanism of $TNF{\alpha}$ and $NF-_{\kappa}B$ activation on cell death protection, we investigate the effect of NO on the cell death induced by serum- deprivation in bovine cerebral endothelial cells in this study. Addition of $TNF{\alpha}$, which are inducer of iNOS, prevented serum-deprivation induced cell death. Increased expression of iNOS was confirmed indirectly by nitrite measurement. When selective iNOS inhibitors were treated, the protective effect of $TNF{\alpha}$ on cell death was partially blocked, suggesting that iNOS expression was involved in controlling cell death. Exogenously added NO substrate (L-arginine) and NO donors (sodium nitroprusside and S-nitroso-N-acetylpenicillamine) also inhibited the cell death induced by serum deprivation. These results suggest that NO has protective effect on bovine cerebral endothelial cell death induced by serum-deprivation and that iNOS is one of the possible target molecules by which $NF-_{\kappa}B$ exerts its cytoprotective effect.

  • PDF

The Effect of Methylene Blue on Inducible Nitric-oxide Synthase in a Rat Model of Acute Lung Injury Induced by Paraquat (파라쿼트를 투여한 백서의 급성 폐 손상 모델에서 메틸렌블루 투여가 Inducible Nitric Oxide Synthase 유전자 발현에 미치는 효과에 관한 연구)

  • Park, Hyun Soo;Lee, Chang Hyun;Jung, Sung Goo;Suh, Gil Joon;Jung, Sung Eun;Youn, Yeo Kyu
    • Journal of Trauma and Injury
    • /
    • v.18 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Purpose: This study was designed to determine if methylene blue inhibited the lipid peroxidation, the production of NO, and the gene expression of iNOS in acute lung injury induced by paraquat and if the inhibitory effect was dose dependent. Methods: Female Sprague-Dawley rats were divided into four groups: the control group, the group treated with paraquat only, the group treated with paraquat and a low dose of methylene blue (2 mg/kg), and the group treated with paraquat and a high dose of methylene blue (20 mg/kg). Methylene blue was administered via the jugular vein 1 h after paraquat administration, and animals were sacrificed 6 and 24 h after paraquat administration. Malondialdehyde (MDA) as lipid peroxidation, reduced glutathione (GSH) as an antioxidant defense, the plasma NO concentration, and the expression of iNOS mRNA in the lung tissue were measured Results: Lung MDA contents decreased, with no significant difference between the methylene-blue groups and the paraquat-only group. Lung GSH contents were significantly elevated at 24 h in the methylene-blue groups compared with the paraquat-only group. Plasma NO concentrations were significantly reduced at 6 and 24 h in the methylene-blue groups compared with the paraquat-only group. There was also a significant decrease in the plasma NO concentration at 6 h in the high-dose methylene-blue group compared with the low-dose methylene-blue group. The expression of iNOS mRNA in the lung tissue was slightly decreased in the methylene-blue groups. It was also markedly increased at 24 h in the paraquat-only group compared with the methylene-blue groups. The gene expression was relatively decreased in the high-dose methylene-blue group compared with the low-dose methylene-blue group. Conclusion: This study suggests that methylene blue has an inhibitory effect on the plasma NO concentration and the expression of iNOS mRNA in lung injury induced by paraquat. No inhibitory effect of methylene blue on lipid peroxidation or dose-dependent inhibitory effects were clearly shown.

Effects of Water Extracts from Chaenomeles sinensis, Polygonum cuspidatum and Boswellia carterii on LPS-Induced Nitric Oxide Production in Raw 264.7 Cell (목과(木瓜), 호장근(虎杖根) 및 유향(乳香) 추출물이 Raw 264.7 cell에서 LPS로 유도된 nitric oxide 생성에 미치는 영향)

  • Lee, Tae-Jin;Woo, Kyung-Jin;Shu, Seong-Il;Shin, Sang-Woo;Kim, Sang-Chan;Kwon, Young-Kyu;Park, Jong-Wook;Kwon, Taeg-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.603-608
    • /
    • 2006
  • In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, water extracts from the fruit of Chaenomeles sinensis, the root of Polygonum cuspidatum and Boswellia carterii inhibited the LPS-induced NO production in a parallel dose-dependent manner. To investigate the mechanism by which those extracts inhibits NO production, we examined the expression of iNOS and COX-2 in both mRNA and protein levels. We observed a significant change in the iNOS expression between LPS alone and LPS plus those extracts-treated cells. However, water extracts from Chaenomeles sinensis, Polygonum cuspidatum and Boswellia carterii did not inhibit COX-2 expression which was induced by LPS treatment in Raw 264.7 cells. These data suggest that water extracts from Chaenomeles sinensis, Polygonum cuspidatum and Boswellia carterii can modulate anti-inflammatory immune response, which may be in part associated with the regulation of NO synthesis through the regulation of iNOS expression in mouse macrophage cells.

Effects of Esthetic Essential Oils on LPS-Induced Nitric Oxide Generation in Murine Marcrophage RAW 264,7 Cells (Medical Skin Care에서 사용빈도가 높은 Esthetic Essential Oils에 의한 Nitric Oxide 생성억제 효과)

  • Hong, Jin-Tae;Lee, Hwa-Jeong;Lee, Chung-Woo;Choi, Myoung-Suk;Son, Dong-Ju
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.111-116
    • /
    • 2006
  • Essential oils have been used extensively in pharmacy, medicine, food, beverages, cosmetics, perfumery and aromatherapy. Although anti-bacteria, anti-virus, alleviation of fever operations and an anti-inflammatory properties have been reported, action mechanisms have not been fully discovered. In the present study, anti-inflammatory activities of thirty three essential oils have been evaluated in lipopolysaccharide (LPS)-treated macrophage RAW 264.7 cells by the evaluation of nitric oxide (NO) generation since NO generation is implicated in causal factor of inflammation. Among the tested 33 essential oil, Lemongrass oil showed the most inhibitory effect on LPS-induced NO generation in a dose dependent manner ($IC_{50}$ : $22 {\mu}g/mL$). In further study, it was found that Lemongrass oil inhibited the expression of inducible nitric oxide synthase. These results suggest that Lemongrass oil may be useful for improvements of the inflammatory disease such as pimple acne skin.

Anti-inflammatory Activities of Ethylacetate Extract of Rehmannia glutinosa in LPS-induced RAW 264.7 Cells

  • Jin, Chang-Hyun;Lee, Young-Man;Kang, Min-Ah;Park, Yong-Dae;Choi, Dae-Seong;Byun, Myung-Woo;Jeong, Il-Yun
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.923-927
    • /
    • 2009
  • This study is to investigate the anti-inflammatory effects of the ethylacetate extract of Rehmannia glutinosa (RGEAE). The anti-inflammatory activities using nitric oxide (NO), cytokine, and chemokine production in lipopolysaccharide (LPS)-induced RAW 264.7 cells were checked. Results indicated that RGEAE suppressed the NO, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) production in a dose-dependent manner. Inhibition of NO formation was due to a decrease in inducible NOS (iNOS) expression. It was also found that the anti-inflammatory activities of RGEAE resulted from its inhibitory role on the nuclear factor $(NF)-{\kappa}B$ activation and reactive oxygen species (ROS) production. Therefore, it is suggested that RGEAE has potential as a therapeutic material to attenuate the inflammatory disease such as rheumatoid arthritis.

Cytokines Stimulate Lung Epithelial Cells to Release Nitric Oxide

  • Robbins, Richard A.;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.447-454
    • /
    • 1995
  • Cytokine release from alveolar macrophages and subsequent interaction of these cytokines with the bronchial epithelium can induce epithelial cells to release inflammatory mediators. Nitric oxide(NO), a highly reactive gas formed from arginine by nitric oxide synthase(NOS), is known to be involved in inflammation and edema formation, and the inducible form of NOS(iNOS) can be increased by cytokines. In this context, we hypothesized that lung epithelial cells could be stimulated by cytokines released by alveolar macrophages to express iNOS. To test this hypothesis, the murine lung epithelial cell line, LA-4, or the human lung epithelial cell line, A549, were stimulated with culture supernatant fluids from alveolar macrophages. NO production was assessed by evaluating the culture supernatant fluids for nitrite and nitrate, the stable end products of NO. Both murine and human cell culture supernatant fluids demonstrated an increase in nitrite and nitrate which were time- and dose-dependent and attenuated by $TNF{\alpha}$ and IL-$1{\beta}$ antibodies(p<0.05, all comparisons). Consistent with these observations, cytomix a combination of $TNF{\alpha}$, IL-$1{\beta}$, and $\gamma$-interferon, stimulated the lung epithelial cell lines as well as primary cultures of human bronchial epithelial cells to increase their NO production as evidenced by an increase in nitrite and nitrate in their culture supernatant fluids, an increase in the iNOS staining by immunocytochemistry, and an increase in iNOS mRNA by Northern blottin(p<0.05, all comparisons). The cytokine effects on iNOS were all attenuated by dexamethasone. To determine if these in vitro observations are reflected in vivo, exhaled NO was measured and found to be increased in asthmatics not receiving corticosteroids. These data demonstrate that alveolar macrophage derived cytokines increase iNOS expression in lung epithelial cells and that these in vitro observations are mirrored by increased exhaled NO levels in asthmatics. Increased NO in the lung may contribute to edema formation and airway narrowing.

  • PDF