• Title/Summary/Keyword: iDTMC

Search Result 2, Processing Time 0.02 seconds

Real variance estimation in iDTMC-based depletion analysis

  • Inyup Kim;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4228-4237
    • /
    • 2023
  • The Improved Deterministic Truncation of Monte Carlo (iDTMC) is a powerful acceleration and variance reduction scheme in the Monte Carlo analysis. The concept of the iDTMC method and correlated sampling-based real variance estimation are briefly introduced. Moreover, the application of the iterative scheme to the correlated sampling is discussed. The iDTMC method is utilized in a 3-dimensional small modular reactor (SMR) model problem. The real variances of burnup-dependent criticality and power distribution are evaluated and compared with the ones obtained from 30 independent iDTMC calculations. The impact of the inactive cycles on the correlated sampling is also evaluated to investigate the consistency of the correlated sample scheme. In addition, numerical performances and sensitivity analysis on the real variance estimation are performed in view of the figure of merit of the iDTMC method. The numerical results show that the correlated sampling accurately estimates the real variances with high computational efficiencies.

Performance Evaluation of the VoIP Services of the Cognitive Radio System, Based on DTMC

  • Habiba, Ummy;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • In recent literature on traffic scheduling, the combination of the two-dimensional discrete-time Markov chain (DTMC) and the Markov modulated Poisson process (MMPP) is used to analyze the capacity of VoIP traffic in the cognitive radio system. The performance of the cognitive radio system solely depends on the accuracy of spectrum sensing techniques, the minimization of false alarms, and the scheduling of traffic channels. In this paper, we only emphasize the scheduling of traffic channels (i.e., traffic handling techniques for the primary user [PU] and the secondary user [SU]). We consider the following three different traffic models: the cross-layer analytical model, M/G/1(m) traffic, and the IEEE 802.16e/m scheduling approach to evaluate the performance of the VoIP services of the cognitive radio system from the context of blocking probability and throughput.